Colossal transverse magnetoresistance due to nematic superconducting phase fluctuations in a copper oxide

Author:

Wårdh Jonatan1,Granath Mats1ORCID,Wu Jie23,Bollinger Anthony T2,He Xi45,Božović Ivan245ORCID

Affiliation:

1. Department of Physics, University of Gothenburg , SE-41296 Gothenburg , Sweden

2. Brookhaven National Laboratory , Upton, NY 11973 , USA

3. School of Science, Westlake University Present address: , Hangzhou , China

4. Department of Chemistry, Yale University , New Haven, CT 06520 , USA

5. Energy Sciences Institute, Yale University , West Haven, CT 06516 , USA

Abstract

Abstract Electronic anisotropy (“nematicity”) has been detected in cuprate superconductors by various experimental techniques. Using angle-resolved transverse resistance (ARTR) measurements, a very sensitive and background-free technique that can detect 0.5% anisotropy in transport, we have observed it also in La2-xSrxCuO4 (LSCO) for 0.02 ≤ x ≤ 0.25. A central enigma in LSCO is the rotation of the nematic director (orientation of the largest longitudinal resistance) with temperature; this has not been seen before in any material. Here, we address this puzzle by measuring the angle-resolved transverse magnetoresistance (ARTMR) in LSCO. We report the discovery of colossal transverse magnetoresistance (CTMR)—an order-of-magnitude drop in the transverse resistivity in the magnetic field of 6 T. We show that the apparent rotation of the nematic director is caused by anisotropic superconducting fluctuations, which are not aligned with the normal electron fluid, consistent with coexisting bond-aligned and diagonal nematic orders. We quantify this by modeling the (magneto-)conductivity as a sum of normal (Drude) and paraconducting (Aslamazov–Larkin) channels but extended to contain anisotropic Drude and Cooper-pair effective mass tensors. Strikingly, the anisotropy of Cooper-pair stiffness is much larger than that of the normal electrons. It grows dramatically on the underdoped side, where the fluctuations become quasi-one-dimensional. Our analysis is general rather than model dependent. Still, we discuss some candidate microscopic models, including coupled strongly-correlated ladders where the transverse (interladder) phase stiffness is low compared with the longitudinal intraladder stiffness, as well as the anisotropic superconducting fluctuations expected close to the transition to a pair-density wave state.

Publisher

Oxford University Press (OUP)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3