Human monocarboxylate transporters accept and relay protons via the bound substrate for selectivity and activity at physiological pH

Author:

Geistlinger Katharina1,Schmidt Jana D R1,Beitz Eric1ORCID

Affiliation:

1. Department of Pharmaceutical and Medicinal Chemistry, Christian-Albrechts-University of Kiel , Gutenbergstraße 76, Kiel 24118 , Germany

Abstract

Abstract Human monocarboxylate/H+ transporters, MCT, facilitate the transmembrane translocation of vital weak acid metabolites, mainly l-lactate. Tumors exhibiting a Warburg effect rely on MCT activity for l-lactate release. Recently, high-resolution MCT structures revealed binding sites for anticancer drug candidates and the substrate. Three charged residues, Lys 38, Asp 309, and Arg 313 (MCT1 numbering) are essential for substrate binding and initiation of the alternating access conformational change. However, the mechanism by which the proton cosubstrate binds and traverses MCTs remained elusive. Here, we report that substitution of Lys 38 by neutral residues maintained MCT functionality in principle, yet required strongly acidic pH conditions for wildtype-like transport velocity. We determined pH-dependent biophysical transport properties, Michaelis–Menten kinetics, and heavy water effects for MCT1 wildtype and Lys 38 mutants. Our experimental data provide evidence for the bound substrate itself to accept and shuttle a proton from Lys 38 to Asp 309 initiating transport. We have shown before that substrate protonation is a pivotal step in the mechanisms of other MCT-unrelated weak acid translocating proteins. In connection with this study, we conclude that utilization of the proton binding and transfer capabilities of the transporter-bound substrate is probably a universal theme for weak acid anion/H+ cotransport.

Funder

European Union's Horizon 2020 research

Marie Skłodowska-Curie

Publisher

Oxford University Press (OUP)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3