Human RFX6 regulates endoderm patterning at the primitive gut tube stage

Author:

Nakamura Toshihiro1ORCID,Fujikura Junji1ORCID,Ito Ryo12,Keidai Yamato1ORCID,Inagaki Nobuya13ORCID

Affiliation:

1. Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University , Kyoto 606-8507 , Japan

2. Center for iPS Cell Research and Application, Kyoto University , Kyoto 606-8507 , Japan

3. Medical Research Institute, Kitano Hospital, PIIF Tazuke-kofukai , Osaka 530-8480 , Japan

Abstract

Abstract Transcriptional factor RFX6 is known to be a causal gene of Mitchell–Riley syndrome (MRS), an autosomal recessive neonatal diabetes associated with pancreatic hypoplasia and intestinal atresia/malformation. The morphological defects are limited to posterior foregut and mid-hindgut endodermal lineages and do not occur in the anterior foregut lineage; the mechanism remains to be fully elucidated. In this study, we generated RFX6+/eGFP heterozygous knockin and RFX6eGFP/eGFP homozygous knockin/knockout human-induced pluripotent stem cell (hiPSC) lines and performed in vitro endoderm differentiation to clarify the role of RFX6 in early endoderm development. RFX6 expression was found to surge at the primitive gut tube (PGT) stage in comparison with that in the undifferentiated or definitive endoderm stage. At the PGT stage, the expression of PDX1 and CDX2, posterior foregut and mid-hindgut master regulators, respectively, was decreased by the RFX6 deficit. PDX1+ and CDX2+ cells were mostly green fluorescent protein (GFP)+ in RFX6+/eGFP hiPSCs, but their cell number was markedly decreased in RFX6eGFP/eGFP hiPSCs. The expression of SOX2, an anterior foregut marker, was not affected by the RFX6 deficit. In addition, we found a putative RFX6-binding X-box motif using cap analysis of gene expression-seq and the motif-containing sequences in the enhancer regions of PDX1 and CDX2 bound to RFX6 in vitro. Thus, RFX6 regulates the ParaHox genes PDX1 and CDX2 but does not affect SOX2 in early endodermal differentiation, suggesting that defects in early stage endoderm patterning account for the morphological pathology of MRS.

Funder

Japan Society for the Promotion of Science

Japan Foundation for Applied Enzymology

Japan Agency for Medical Research and Development

Japan Association for Diabetes Education and Care

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3