Particulate matter composition drives differential molecular and morphological responses in lung epithelial cells

Author:

Engels Sean M1ORCID,Kamat Pratik2ORCID,Pafilis G Stavros1ORCID,Li Yukang3,Agrawal Anshika2ORCID,Haller Daniel J4ORCID,Phillip Jude M2567ORCID,Contreras Lydia M18ORCID

Affiliation:

1. McKetta Department of Chemical Engineering, University of Texas at Austin , Austin, TX 78712 , USA

2. Department of Chemical and Biomolecular Engineering, Johns Hopkins University , Baltimore, MD 21218 , USA

3. Department of Biology, Johns Hopkins University , Baltimore, MD 21218 , USA

4. Department of Chemical and Biomolecular Engineering, North Carolina State University , Raleigh, NC 27606 , USA

5. Institute for Nanobiotechnology, Johns Hopkins University , Baltimore, MD 21218 , USA

6. Department of Biomedical Engineering, Johns Hopkins University , Baltimore, MD 21218 , USA

7. Department of Oncology, Sidney Kimmel Comprehensive Cancer Center , Baltimore, MD 21231 , USA

8. Institute for Cellular and Molecular Biology, The University of Texas at Austin , Austin, TX, 78712 , USA

Abstract

Abstract Particulate matter (PM) is a ubiquitous component of air pollution that is epidemiologically linked to human pulmonary diseases. PM chemical composition varies widely, and the development of high-throughput experimental techniques enables direct profiling of cellular effects using compositionally unique PM mixtures. Here, we show that in a human bronchial epithelial cell model, exposure to three chemically distinct PM mixtures drive unique cell viability patterns, transcriptional remodeling, and the emergence of distinct morphological subtypes. Specifically, PM mixtures modulate cell viability, DNA damage responses, and induce the remodeling of gene expression associated with cell morphology, extracellular matrix organization, and cellular motility. Profiling cellular responses showed that cell morphologies change in a PM composition-dependent manner. Finally, we observed that PM mixtures with higher cadmium content induced increased DNA damage and drove redistribution among morphological subtypes. Our results demonstrate that quantitative measurement of individual cellular morphologies provides a robust, high-throughput approach to gauge the effects of environmental stressors on biological systems and score cellular susceptibilities to pollution.

Funder

National Institutes of Health

National Science Foundation

National Institute on Aging

Hypothesis Fund Award

Texas Advanced Computing Center

University of Texas at Austin

Center for Biomedical Research Support

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3