Estrogen-dependent expression and function of secretogranin 2a in female-specific peptidergic neurons

Author:

Fleming Thomas1ORCID,Tachizawa Masaya1,Nishiike Yuji1ORCID,Koiwa Ai1,Homan Yuki1,Okubo Kataaki1ORCID

Affiliation:

1. Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo , Tokyo 113-8657 , Japan

Abstract

Abstract Secretogranin 2 (Scg2) is a member of the secretogranin/chromogranin family of proteins that is involved in neuropeptide and hormone packaging to secretory granules and serves as a precursor for several secreted pleiotropic peptides. A recent study in zebrafish showed that the teleost Scg2 orthologs, scg2a and scg2b, play an important role in mating behavior, but its modes of action and regulatory mechanisms remain unclear. In this study, we identify scg2a in another teleost species, medaka, by transcriptomic analysis as a gene that is expressed in an ovarian secretion-dependent manner in a group of neurons relevant to female sexual receptivity, termed FeSP neurons. Investigation of scg2a expression in the FeSP neurons of estrogen receptor (Esr)-deficient medaka revealed that it is dependent on estrogen signaling through Esr2b, the major determinant of female-typical mating behavior. Generation and characterization of scg2a-deficient medaka showed no overt changes in secretory granule packaging in FeSP neurons. This, along with the observation that Scg2a and neuropeptide B, a major neuropeptide produced by FeSP neurons, colocalize in a majority of secretory granules, suggests that Scg2a mainly serves as a precursor for secreted peptides that act in conjunction with neuropeptide B. Further, scg2a showed sexually biased expression in several brain nuclei implicated in mating behavior. However, we found no significant impact of scg2a deficiency on the performance of mating behavior in either sex. Collectively, our results indicate that, although perhaps not essential for mating behavior, scg2a acts in an estrogen/Esr2b signaling-dependent manner in neurons that are relevant to female sexual receptivity.

Funder

Ministry of Education, Culture, Sports, Science, and Technology

Japan Society for the Promotion of Science

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3