Dysregulated miRNAs modulate tumor microenvironment associated signaling networks in pancreatic ductal adenocarcinoma

Author:

Liu Tiantian1,Chen Zhong1,Chen Wanqiu1,Evans Ryan2,Xu Jane1,Reeves Mark E3,de Vera Michael E2,Wang Charles14ORCID

Affiliation:

1. Center for Genomics, School of Medicine, Loma Linda University , Loma Linda, CA 92350 , USA

2. Transplant Institute, Loma Linda University , Loma Linda, CA 92350 , USA

3. Cancer Center & School of Medicine, Loma Linda University , Loma Linda, CA 92350 , USA

4. Department of Basic Sciences, School of Medicine, Loma Linda University , Loma Linda, CA 92350 , USA

Abstract

AbstractThe desmoplastic and complex tumor microenvironment of pancreatic ductal adenocarcinoma (PDAC) has presented tremendous challenges for developing effective therapeutic strategies. Strategies targeting tumor stroma, albeit with great potential, have met with limited success due to the lack of knowledge on the molecular dynamics within the tumor microenvironment (TME). In pursuit of a better understanding of the influence of miRNAs on TME reprogramming and to explore circulating miRNAs as diagnostic and prognostic biomarkers for PDAC, using RNA-seq, miRNA-seq, and single-cell RNA-seq (scRNA-seq), we investigated the dysregulated signaling pathways in PDAC TME modulated by miRNAs from plasma and tumor tissue. Our bulk RNA-seq in PDAC tumor tissue identified 1445 significantly differentially expressed genes with extracellular matrix and structure organization as the top enriched pathways. Our miRNA-seq identified 322 and 49 abnormally expressed miRNAs in PDAC patient plasma and tumor tissue, respectively. We found many of the TME signaling pathways were targeted by those dysregulated miRNAs in PDAC plasma. Combined with scRNA-seq from patient PDAC tumor, our results revealed that these dysregulated miRNAs were closely associated with extracellular matrix (ECM) remodeling, cell-ECM communication, epithelial-mesenchymal transition, as well as immunosuppression orchestrated by different cellular components of TME. The findings of this study could assist the development of miRNA-based stromal targeting biomarkers or therapy for PDAC patients.

Funder

National Institutes of Health

American Heart Association

Ardmore Institute of Health

Publisher

Oxford University Press (OUP)

Subject

General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3