Transcriptional survey of abiotic stress response in maize (Zea mays) in the level of gene co-expression network and differential gene correlation analysis

Author:

Nazari Leyla1,Zinati Zahra2

Affiliation:

1. Crop and Horticultural Science Research Department, Fars Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO) , Shiraz, 7155863511 , Iran

2. Department of Agroecology, College of Agriculture and Natural Resources of Darab, Shiraz University , Shiraz, 7459117666 , Iran

Abstract

Abstract Abstract. Maize may be exposed to several abiotic stresses in the field. Therefore, identifying the tolerance mechanisms of natural field stress is mandatory. Gene expression data of maize upon abiotic stress were collected, and 560 differentially expressed genes (DEGs) were identified through meta-analysis. The most significant gene ontology terms in up-regulated genes were ‘response to abiotic stress’ and ‘chitinase activity’. ‘Phosphorelay signal transduction system’ was the most significant enriched biological process in down-regulated DEGs. The co-expression analysis unveiled seven modules of DEGs, with a notable positive correlation between the modules and abiotic stress. Furthermore, the statistical significance was strikingly high for the turquoise, green and yellow modules. The turquoise group played a central role in orchestrating crucial adaptations in metabolic and stress response pathways in maize when exposed to abiotic stress. Within three up-regulated modules, Zm.7361.1.A1_at, Zm.10386.1.A1_a_at and Zm.10151.1.A1_at emerged as hub genes. These genes might introduce novel candidates implicated in stress tolerance mechanisms, warranting further comprehensive investigation and research. In parallel, the R package glmnet was applied to fit a logistic LASSO regression model on the DEGs profile to select candidate genes associated with abiotic responses in maize. The identified hub genes and LASSO regression genes were validated on an independent microarray dataset. Additionally, Differential Gene Correlation Analysis (DGCA) was performed on LASSO and hub genes to investigate the gene-gene regulatory relationship. The P value of DGCA of 16 pairwise gene comparisons was lower than 0.01, indicating a gene–gene significant change in correlation between control and abiotic stress. Integrated weighted gene correlation network analysis and logistic LASSO analysis revealed Zm.11185.1.S1_at, Zm.2331.1.S1_x_at and Zm.17003.1.S1_at. Notably, these 3 genes were identified in the 16 gene-pair comparisons. This finding highlights the notable significance of these genes in the abiotic stress response. Additional research into maize stress tolerance may focus on these three genes.

Publisher

Oxford University Press (OUP)

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3