Salicylic acid modulates secondary metabolism and enhanced colchicine accumulation in long yellow daylily (Hemerocallis citrina)

Author:

Miao Yeminzi1,Li Hanmei2,Pan Junjie1,Zhou Binxiong1,He Tianjun1,Wu Yanxun3,Zhou Dayun1,He Weimin1,Chen Limin1

Affiliation:

1. Lishui Institute of Agricultural and Forestry Sciences , 827 Liyang Stress, Lishui, Zhejiang 323000 , China

2. College of Forestry Science and Technology, Lishui Vocational & Technical College , Lishui, Zhejiang 323000 , China

3. Lishui Science & Technology Bureau , Lishui, Zhejiang 323000 , China

Abstract

Abstract Abstract. Salicylic acid (SA) is an essential phytoregulator that is widely used to promote the synthesis of high-value nutraceuticals in plants. However, its application in daylily, an ornamental plant highly valued in traditional Chinese medicine, has not been reported. Herein, we investigated the exogenous SA-induced physiological, transcriptional and biochemical changes in long yellow daylily (LYD). We found that 2 mg/L foliar SA treatment significantly improved LYD plant growth and yield. Transcriptome sequencing and differentially expressed genes (DEGs) analysis revealed that the phenylpropanoid biosynthesis, isoquinoline alkaloid biosynthesis, sulfur metabolism, plant hormone signal transduction and tyrosine metabolism were significantly induced in SA-treated leaves. Many transcription factors and antioxidant system-related DEGs were induced under the SA treatment. Biochemical analyses showed that the leaf contents of soluble sugar, soluble protein (Cpr), ascorbic acid (AsA) and colchicine were significantly increased by 15.15% (from 30.16 ± 1.301 to 34.73 ± 0.861 mg/g), 19.54% (from 60.3 ± 2.227 to 72.08 ± 1.617 mg/g), 30.45% (from 190.1 ± 4.56 to 247.98 ± 11.652 μg/g) and 73.05% (from 3.08 ± 0.157 to 5.33 ± 0.462 μg/g), respectively, under the SA treatment. Furthermore, we identified 15 potential candidate genes for enhancing the growth, production and phytochemical content of LYD. Our results provide support for the bioaccumulation of colchicine in yellow daylily and valuable resources for biotechnological-assisted production of this important nutraceutical in Hemerocallis spp.

Funder

Lishui Science and Technology Bureau

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3