Exosome-transmitted miR-29a induces colorectal cancer metastasis by destroying the vascular endothelial barrier

Author:

Liu Keshu12,Dou Rongzhang12,Yang Chaogang12,Di Ziyang12,Shi Dongdong12,Zhang Chunxiao12,Song Jialin12,Fang Yan12,Huang Sihao12,Xiang Zhenxian12,Zhang Weisong12,Wang Shuyi12,Xiong Bin12ORCID

Affiliation:

1. Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University , No.169 Donghu Road, Wuchang District, Wuhan, 430071 , China

2. Hubei Key Laboratory of Tumor Biological Behaviors , No.169 Donghu Road, Wuchang District, Wuhan, 430071 , China

Abstract

Abstract Metastasis is the leading cause of colorectal cancer treatment failure and mortality. Communication between endothelium and tumor cells in the tumor microenvironment is required for cancer metastasis. Tumor-derived exosomes have been shown to increase vascular permeability by delivering microRNA (miRNA) to vascular endothelial cells, facilitating cancer metastasis. The mechanism by which Epithelial-mesenchymal transition (EMT) tumor cell-derived exosomes influence vascular permeability remains unknown. MicroRNA-29a (miR-29a) expression is up-regulated in colorectal cancer (CRC) tissues, which is clinically significant in metastasis. Exosomal miR-29a secreted by EMT-CRC cells has been found to decrease the expression of Zonula occlusion 1 (ZO-1), Claudin-5, and Occludin via targeting Kruppel-like factor 4 (KLF4). In vitro co-culture investigations further revealed that EMT-cancer cells release exosomal miR-29a, which alters vascular endothelial permeability. Furthermore, exosomal miR-29a promoted liver metastases in CRC mice. Our findings demonstrate that EMT-CRC cells may transport exosomal miR-29a to endothelial cells in the tumor microenvironment (TME). As a result, increased vascular permeability promotes the development and metastasis of CRC. Exosomal miR-29a has the potential to be a predictive marker for tumor metastasis as well as a viable therapeutic target for CRC.

Funder

National Natural Science Foundation of China

Hubei Provincial Natural Science Foundation of China

Zhongnan Hospital of Wuhan University

Publisher

Oxford University Press (OUP)

Subject

Cancer Research,General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3