Depletion of Gr1+ myeloid cells attenuates high-fat-diet-aggravated esophageal squamous cell carcinoma in mice

Author:

Jianmin Peng123,Qinchao Hu123,Chunyang Wang123,Jiayu Zhang123,Siyu Wang123,Li Wang123,Juan Xia123,Bin Cheng123

Affiliation:

1. Hospital of Stomatology, Sun Yat-sen University , Guangzhou , China

2. Guangdong Provincial Key Laboratory of Stomatology , Guangzhou , China

3. Guanghua School of Stomatology, Sun Yat-sen University , Guangzhou , China

Abstract

Abstract Obesity is a leading cause of multiple cancers, but whether it promotes esophageal squamous cell carcinoma (ESCC) and its underlying cancer-promoting mechanism remains unclear. To evaluate the effect of a high-fat diet (HFD) on ESCC and explore the role and mechanism of myeloid-derived suppressor cells (MDSCs) in HFD-induced ESCC, C57BL/6J mice were treated with 4-nitroquinoline 1-oxide (4NQO) to induce ESCC and randomly assigned to an HFD or a normal-fat diet. An anti-Gr1 monoclonal antibody was used to deplete MDSCs in the context of experimental diets and ESCC induction. The expression of MDSC markers CD11b and Gr1 and immune checkpoints (ICs) PD1, TIM3, and VISTA in lesions were detected by immunohistochemistry. The correlation between myeloid cell markers (CD11b and CD33) and ICs and their relationship with ESCC patient prognosis were further analyzed using the The Cancer Genome Atlas dataset. The results showed that HFD accelerated esophageal carcinogenesis, induced MDSC expansion, and upregulated IC expression, whereas depletion of Gr1+ myeloid cells significantly suppressed tumor growth, decreased the number of MDSCs, and downregulated IC expression in HFD mice. PD1, TIM3, and VISTA expressions were positively correlated with myeloid cell marker expression in human ESCC. Moreover, the high expression of IC molecules was associated with poor survival in patients with ESCC. These data indicate that HFD promotes the initiation and development of ESCC. Gr1+ myeloid cell targeting significantly inhibited ESCC formation in HFD mice, which may be associated with IC downregulation.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Guangdong Province

Basic and Applied Basic Research Foundation of Guangdong Province

Science and Technology Program of Guangzhou

China Postdoctoral Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Cancer Research,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3