Extensin, an underestimated key component of cell wall defence?

Author:

Castilleux Romain12ORCID,Plancot Barbara23,Vicré Maité2,Nguema-Ona Eric4,Driouich Azeddine2

Affiliation:

1. Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden

2. Normandie Université, Laboratoire Glycobiologie et Matrice Extracellulaire Végétale (Glyco-MEV) EA 4358, Fédération de Recherche Normandie Végétal FED 4277, Université de Rouen, Rouen, France

3. Aix Marseille Univ, CEA, CNRS, BIAM, Laboratory of Microbial Ecology of the Rhizosphere, Saint Paul-Lez-Durance, France

4. Centre Mondial de l’Innovation Roullier, Laboratoire de Nutrition Végétale–Pôle Stress Biotiques, 18 avenue Franklin Roosevelt, Saint Malo, France

Abstract

Abstract Background Extensins are plant cell wall hydroxyproline-rich glycoproteins known to be involved in cell wall reinforcement in higher plants, and in defence against pathogen attacks. The ability of extensins to form intra- and intermolecular cross-links is directly related to their role in cell wall reinforcement. Formation of such cross-links requires appropriate glycosylation and structural conformation of the glycoprotein. Scope Although the role of cell wall components in plant defence has drawn increasing interest over recent years, relatively little focus has been dedicated to extensins. Nevertheless, new insights were recently provided regarding the structure and the role of extensins and their glycosylation in plant–microbe interactions, stimulating an interesting debate from fellow cell wall community experts. We have previously revealed a distinct distribution of extensin epitopes in Arabidopsis thaliana wild-type roots and in mutants impaired in extensin arabinosylation, in response to elicitation with flagellin 22. That study was recently debated in a Commentary by Tan and Mort (Tan L, Mort A. 2020. Extensins at the front line of plant defence. A commentary on: ‘Extensin arabinosylation is involved in root response to elicitors and limits oomycete colonization’. Annals of Botany 125: vii–viii) and several points regarding our results were discussed. As a response, we herein clarify the points raised by Tan and Mort, and update the possible epitope structure recognized by the anti-extensin monoclonal antibodies. We also provide additional data showing differential distribution of LM1 extensin epitopes in roots between a mutant defective in PEROXIDASES 33 and 34 and the wild type, similarly to previous observations from the rra2 mutant defective in extensin arabinosylation. We propose these two peroxidases as potential candidates to specifically catalyse the cross-linking of extensins within the cell wall. Conclusions Extensins play a major role within the cell wall to ensure root protection. The cross-linking of extensins, which requires correct glycosylation and specific peroxidases, is most likely to result in modulation of cell wall architecture that allows enhanced protection of root cells against invading pathogens. Study of the relationship between extensin glycosylation and their cross-linking is a very promising approach to further understand how the cell wall influences root immunity.

Funder

La Région Normandie, la Fédération de Recherche

le Centre Mondial de l’Innovation Roullier

Publisher

Oxford University Press (OUP)

Subject

Plant Science

Reference13 articles.

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3