Deuterium MR spectroscopy: potential applications in oncology research

Author:

Bitencourt Almir Galvão Vieira12ORCID,Bhowmik Arka3,Marcal Filho Eduardo Flavio De Lacerda12,Lo Gullo Roberto3,Mazaheri Yousef34,Kapetas Panagiotis35,Eskreis-Winkler Sarah3,Young Robert3,Pinker Katja3ORCID,Thakur Sunitha B34ORCID

Affiliation:

1. Imaging Department, A. C. Camargo Cancer Center , São Paulo, 01525-001, Brazil

2. Diagnósticos da América S.A. , São Paulo, 04321-120, Brazil

3. Department of Radiology, Memorial Sloan Kettering Cancer Center , New York, NY, 10065, United States

4. Department of Medical Physics, Memorial Sloan Kettering Cancer Center , New York, NY, 10065, United States

5. Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna , 1090 Vienna, Austria

Abstract

Abstract Metabolic imaging in clinical practice has long relied on PET with fluorodeoxyglucose (FDG), a radioactive tracer. However, this conventional method presents inherent limitations such as exposure to ionizing radiation and potential diagnostic uncertainties, particularly in organs with heightened glucose uptake like the brain. This review underscores the transformative potential of traditional deuterium MR spectroscopy (MRS) when integrated with gradient techniques, culminating in an advanced metabolic imaging modality known as deuterium MRI (DMRI). While recent advancements in hyperpolarized MRS hold promise for metabolic analysis, their widespread clinical usage is hindered by cost constraints and the availability of hyperpolarizer devices or facilities. DMRI, also denoted as deuterium metabolic imaging (DMI), represents a pioneering, single-shot, and noninvasive paradigm that fuses conventional MRS with nonradioactive deuterium-labelled substrates. Extensively tested in animal models and patient cohorts, particularly in cases of brain tumours, DMI's standout feature lies in its seamless integration into standard clinical MRI scanners, necessitating only minor adjustments such as radiofrequency coil tuning to the deuterium frequency. DMRI emerges as a versatile tool for quantifying crucial metabolites in clinical oncology, including glucose, lactate, glutamate, glutamine, and characterizing IDH mutations. Its potential applications in this domain are broad, spanning diagnostic profiling, treatment response monitoring, and the identification of novel therapeutic targets across diverse cancer subtypes.

Funder

NIH/NCI Cancer Center Support

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3