Diarrhea as a Potential Cause and Consequence of Reduced Gut Microbial Diversity Among Undernourished Children in Peru

Author:

Rouhani Saba1ORCID,Griffin Nicholas W23,Yori Pablo Peñataro14,Gehrig Jeanette L23,Olortegui Maribel Paredes4,Salas Mery Siguas4,Trigoso Dixner Rengifo4,Moulton Lawrence H1,Houpt Eric R5,Barratt Michael J23,Kosek Margaret N15,Gordon Jeffrey I23

Affiliation:

1. Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland

2. Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, Washington

3. Center for Gut Microbiome and Nutrition Research, St. Louis, Missouri

4. Asociación Benéfica Preferred Reporting Items for Systematic Reviews and Meta-analyses, Iquitos, Peru

5. University of Virginia, Charlottesville, Virginia

Abstract

Abstract Background Detrimental effects of diarrhea on child growth and survival are well documented, but details of the underlying mechanisms remain poorly understood. Recent evidence demonstrates that perturbations to normal development of the gut microbiota in early life may contribute to growth faltering and susceptibility to related childhood diseases. We assessed associations between diarrhea, gut microbiota configuration, and childhood growth in the Peruvian Amazon. Methods Growth, diarrhea incidence, illness, pathogen infection, and antibiotic exposure were assessed monthly in a birth cohort of 271 children aged 0–24 months. Gut bacterial diversity and abundances of specific bacterial taxa were quantified by sequencing 16S rRNA genes in fecal samples collected at 6, 12, 18, and 24 months. Linear and generalized linear models were used to determine whether diarrhea was associated with altered microbiota and, in turn, if features of the microbiota were associated with the subsequent risk of diarrhea. Results Diarrheal frequency, duration, and severity were negatively associated with bacterial diversity and richness (P < .05). Children born stunted (length-for-age z-score [LAZ] ≤ −2) who were also severely stunted (LAZ ≤ −3) at the time of sampling exhibited the greatest degree of diarrhea-associated reductions in bacterial diversity and the slowest recovery of bacterial diversity after episodes of diarrhea. Increased bacterial diversity was predictive of reduced subsequent diarrhea from age 6 to 18 months. Conclusions Persistent, severe growth faltering may reduce the gut microbiota's resistance and resilience to diarrhea, leading to greater losses of diversity and longer recovery times. This phenotype, in turn, denotes an increased risk of future diarrheal disease and growth faltering.

Funder

Bill and Melinda Gates Foundation

Foundation for the National Institutes of Health

Fogarty International Center

Fisher Center for Environmental Infectious Diseases

Johns Hopkins University

Ken and Sherrilyn Fisher Foundation

Publisher

Oxford University Press (OUP)

Subject

Infectious Diseases,Microbiology (medical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3