Role and Mechanism of Endoplasmic Reticulum Stress in Mice Pancreatic Islet Dysfunction After Severe Burns

Author:

Li Zhisheng12,Liu Xinzhu2,Zhang Kun32ORCID,Zhao Hongqing32,Luo Peng2,Li Dawei2ORCID,Liu Zhaoxing2,Yuan Huageng2,Zhang Bohan2,Xie Xiaoye2ORCID,Shen Chuan’an2ORCID

Affiliation:

1. Jinzhou Medical University , Jinzhou, China

2. Department of Burns and Plastic Surgery, the Fourth Medical Center, Chinese PLA General Hospital , Beijing , China

3. Jinzhou Medical University , Jinzhou , China

Abstract

Abstract This study attempted to investigate the role and mechanism of endoplasmic reticulum (ER) stress in the islet dysfunction in mice after severe burns. C57BL/6 mice were randomly divided into the sham group, burn group, and burn+4-phenylbutyric acid (4-PBA) group. Mice were burned with full thickness of 30% total surface area (TBSA), and 4-PBA solution was intraperitoneally injected into mice in burn+4-PBA group. Glucose-stimulated insulin secretion (GSIS), Fasting blood glucose (FBG) and glucose tolerance were detected 24 hours post severe burns. The ER stress-related pathway markers immunoglobulin binding protein (BIP), X-box binding protein 1 (XBP1), phosphorylation-PKR-like ER kinase (p-PERK), phosphorylation-eukaryotic translation initiation factor 2α (p-eIF2α), CHOP, activating transcription factor 6 (ATF6), apoptosis-related protein Cleaved-Caspase 3, and islet cell apoptosis were measured. Mice were characterized with elevated FBG, decreased glucose tolerance and GSIS levels post severe burns. The expression of BIP, XBP1, p-PERK, p-eIF2α, CHOP, ATF6, Cleaved-Caspase 3, and islet cell apoptosis were increased significantly after severe burns. 4-PBA treatment contributed to decreased FBG, improved glucose tolerance, increased GSIS, inhibited islet ER stress, and reduced pancreatic islet cell apoptosis in mice post severe burns. ER stress occurs in islets of severely burned mice, which leads to increased apoptosis of islet cells, thus resulting in islet dysfunction.

Funder

General Program of National Natural Science Foundation of China

Major Program of Military Logistics Research Plan

Major Program of Healthcare Special Project

Publisher

Oxford University Press (OUP)

Subject

Rehabilitation,Emergency Medicine,Surgery

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3