Hypophosphatemic rickets and short stature

Author:

Davis Kelli1ORCID,Imel Erik A23ORCID,Kelley Jennifer1ORCID

Affiliation:

1. Department of Pediatrics, Endocrinology, Vanderbilt University Medical Center , Nashville, TN 37232, United States

2. Departments of Medicine and Pediatrics , Endocrinology, , Indianapolis, IN 46202, United States

3. Indiana University School of Medicine , Endocrinology, , Indianapolis, IN 46202, United States

Abstract

Vignette An 18-month-old male presented with gross motor delay and poor growth (weight z-score −2.21, length z-score −4.26). Radiographs showed metaphyseal irregularities suggesting metaphyseal dysplasia and sagittal craniosynostosis. Biochemical evaluation supported hypophosphatemic rickets [serum phosphorus 2.3 mg/dL (reference range (RR) 4.3–6.8), alkaline phosphatase 754 unit/L (RR 156–369)] due to renal phosphate wasting (TmP/GFR 4.3 mg/dL, normal for age 4.3-6.8), with C-terminal fibroblast growth factor 23 (FGF23) 125 RU/mL (>90 during hypophosphatemia suggests FGF23-mediated hypophosphatemia). Treatment was initiated with calcitriol and phosphate. Genetic analysis showed a pathogenic variant of FGF23: c.527G > A (p.Arg176Gln) indicative of autosomal dominant hypophosphatemic rickets (ADHR). Consistent with reports linking iron deficiency with the ADHR phenotype, low ferritin was detected. Following normalization of ferritin level (41 ng/mL) with oral ferrous sulfate replacement, biochemical improvement was demonstrated (FGF23 69 RU/mL, phosphorus 5.0 mg/dL and alkaline phosphatase 228 unit/L). Calcitriol and phosphate were discontinued. Three years later, the patient demonstrated improved developmental milestones, linear growth (length Z-score −2.01), radiographic normalization of metaphyses, and stabilization of craniosynostosis. While the most common cause of hypophosphatemic rickets is X-linked hypophosphatemia, other etiologies should be considered as treatment differs. In ADHR, normalization of iron leads to biochemical and clinical improvement.

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3