Salicylates Ameliorate Intestinal Inflammation by Activating Macrophage AMPK

Author:

Banskota Suhrid12,Wang Huaqing12,Kwon Yun Han12,Gautam Jaya345,Gurung Pallavi6,Haq Sabah12,Hassan F M Nazmul12,Bowdish Dawn M2,Kim Jung-Ae6,Carling David7,Fullerton Morgan D8,Steinberg Gregory R345,Khan Waliul I12ORCID

Affiliation:

1. Farncombe Family Digestive Health Research Institute

2. Department of Pathology and Molecular Medicine

3. Centre for Metabolism, Obesity and Diabetes Research

4. Department of Medicine

5. Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada

6. College of Pharmacy, Yeungnam University, Republic of Korea

7. Division of Clinical Sciences, MRC London Institute of Medical Sciences, Imperial College, London, UK

8. Department of Biochemistry, Microbiology and Immunology, Centre for Inflammation, Infection and Immunity, Centre for Catalysis Research and Innovation, University of Ottawa, Ottawa, Ontario, Canada

Abstract

Abstract Background Inflammatory bowel diseases are the most common chronic intestinal inflammatory conditions, and their incidence has shown a dramatic increase in recent decades. Limited efficacy and questionable safety profiles with existing therapies suggest the need for better targeting of therapeutic strategies. Adenosine monophosphate-activated protein kinase (AMPK) is a key regulator of cellular metabolism and has been implicated in intestinal inflammation. Macrophages execute an important role in the generation of intestinal inflammation. Impaired AMPK in macrophages has been shown to be associated with higher production of proinflammatory cytokines; however, the role of macrophage AMPK in intestinal inflammation and the mechanism by which it regulates inflammation remain to be determined. In this study, we investigated the role of AMPK with a specific focus on macrophages in the pathogenesis of intestinal inflammation. Methods A dextran sodium sulfate-induced colitis model was used to assess the disease activity index, histological scores, macroscopic scores, and myeloperoxidase level. Proinflammatory cytokines such as tumor necrosis factor-α, interleukin-6, and interleukin-1β were measured by enzyme-linked immunosorbent assay. Transient transfection of AMPKβ1 and LC3-II siRNA in RAW 264.7 cells was performed to elucidate the regulation of autophagy by AMPK. The expression of p-AMPK, AMPK, and autophagy markers (eg, LC3-II, p62, Beclin-1, and Atg-12) was analyzed by Western blot. Results Genetic deletion of AMPKβ1 in macrophages upregulated the production of proinflammatory cytokines, aggravated the severity of dextran sodium sulfate-induced colitis in mice, which was associated with an increased nuclear translocation of nuclear factor-κB, and impaired autophagy both in vitro and in vivo. Notably, the commonly used anti-inflammatory 5-aminosalicylic acid (ie, mesalazine) and sodium salicylate ameliorated dextran sodium sulfate-induced colitis through the activation of macrophage AMPK targeting the β1 subunit. Conclusions Together, these data suggest that the development of therapeutic agents targeting AMPKβ1 may be effective in the treatment of intestinal inflammatory conditions including inflammatory bowel disease.

Funder

Canadian Institutes of Health Research

Heart and Stroke Foundation

Publisher

Oxford University Press (OUP)

Subject

Gastroenterology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3