Serial properties, selector proofs and the provability of consistency

Author:

Artemov Sergei1

Affiliation:

1. The Graduate Center, the City University of New York , 365 Fifth Avenue, New York City, NY 10016 , USA

Abstract

Abstract The consistency of a theory means that each of its formal derivations $D_{0}, D_{1}, D_{2}, \ldots $ is free of contradictions. For Peano Arithmetic PA, after the standard coding of derivations by numerals, PA-consistency is directly represented by the consistency scheme  $\textsf{Con}^{S}_{\textsf{PA}}$, which is a series of arithmetical statements ‘$n$ is not a code of a derivation of $\ (0=1)$’ for numerals $n=0,1,2,\ldots $. We note that the consistency formula  $\textsf{Con}_{\textsf{PA}}$, $\forall x$ ‘$x$  is not a code of a derivation of $(0=1)$,’ is strictly stronger in PA than PA-consistency and corresponds to some other property, which we call uniform consistency. When studying the provability of consistency in PA we ought to work not with the consistency formula $\textsf{Con}_{\textsf{PA}}$ but rather with the consistency scheme $\textsf{Con}^{S}_{\textsf{PA}}$, which adequately represents PA-consistency. This paper introduces the Hilbert-inspired notion of proof of an infinite series of formulas in a theory and proves PA-consistency in the form $\textsf{Con}^{S}_{\textsf{PA}}$ in PA. These findings show that PA proves its consistency whereas, by Gödel’s second incompleteness theorem, PA cannot prove its uniform consistency.

Publisher

Oxford University Press (OUP)

Reference31 articles.

1. Explicit provability and constructive semantics;Artemov;Bulletin of Symbolic Logic,2001

2. The provability of consistency;Artemov,2019

3. Justification Logic

4. First-order proof theory of arithmetic;Buss,1998

5. Current research on Gödel’s incompleteness theorems;Cheng;Bulletin of Symbolic Logic,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3