Deep learning identifies erroneous microarray-based, gene-level conclusions in literature

Author:

Qin Yanan1,Yi Daiyao1,Chen Xianghao1,Guan Yuanfang12ORCID

Affiliation:

1. Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109, USA

2. Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA

Abstract

Abstract More than 110 000 publications have used microarrays to decipher phenotype-associated genes, clinical biomarkers and gene functions. Microarrays rely on digital assaying the fluorescence signals of arrays. In this study, we retrospectively constructed raw images for 37 724 published microarray data, and developed deep learning algorithms to automatically detect systematic defects. We report that an alarming amount of 26.73% of the microarray-based studies are affected by serious imaging defects. By literature mining, we found that publications associated with these affected microarrays have reported disproportionately more biological discoveries on the genes in the contaminated areas compared to other genes. 28.82% of the gene-level conclusions reported in these publications were based on measurements falling into the contaminated area, indicating severe, systematic problems caused by such contaminations. We provided the identified published, problematic datasets, affected genes and the imputed arrays as well as software tools for scanning such contamination that will become essential to future studies to scrutinize and critically analyze microarray data.

Funder

National Institutes of Health

Publisher

Oxford University Press (OUP)

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3