AT2 Receptor Stimulation Inhibits Vascular Smooth Muscle Cell Senescence Induced by Angiotensin II and Hyperglycemia

Author:

Bai Hui-Yu1,Li Hui1ORCID,Zhou Xiang1,Gu Hai-Bo1,Shan Bao-Shuai2ORCID

Affiliation:

1. Department of Cardiology, The Second Affiliated Hospital of Soochow University , Suzhou , China

2. Department of Neurology, The Affiliated Suzhou Hospital of Nanjing Medical University , Suzhou , China

Abstract

Abstract BACKGROUND Hyperglycemia has been widely reported to induce vascular senescence. We have previously demonstrated that angiotensin II (Ang II) could promote brain vascular smooth muscle cell (VSMC) senescence, and its type 2 (AT2) receptor deletion could enhance VSMC senescence. Therefore, we examined the possible cross-talk between Ang II and hyperglycemia on VSMC senescence, and the roles of AT2 receptor agonist, compound 21 (C21) on it. METHODS Aortic VSMCs were prepared from adult male mice and stimulated with Ang II and/or high glucose (Glu) and/or C21 and/or an autophagy inhibitor, 3-methyladenine (3-MA), and/or an autophagy agonist, rapamycin (RAP) for the indicated times. Cellular senescence, oxidative stress, and protein expressions were evaluated. RESULTS Combination treatment with Ang II and Glu synergistically increased the proportion of VSMC senescent area compared with control group and each treatment alone, which was almost completely attenuated by C21 treatment. Moreover, combination treatment induced significant changes in the levels of superoxide anion, the expressions of p21 and pRb, and the ratio of LC3B II/I expression, which were also significantly attenuated by C21 treatment. The proportion of VSMC senescent area and the levels of superoxide anion by combination treatment were increased after 3-MA treatment, and the proportion of senescent area and the expressions of p21 and pRb were decreased after RAP treatment, both of which were further attenuated by C21 treatment. CONCLUSIONS Ang II and hyperglycemia synergistically promoted VSMC senescence, at least partly through the participation by autophagy, oxidative stress, and p21-pRb pathway, which could be inhibited by C21.

Funder

Second Affiliated Hospital of Soochow University

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Internal Medicine

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3