KnockTF: a comprehensive human gene expression profile database with knockdown/knockout of transcription factors

Author:

Feng Chenchen1,Song Chao2,Liu Yuejuan1,Qian Fengcui1,Gao Yu1,Ning Ziyu1,Wang Qiuyu1,Jiang Yong1,Li Yanyu1,Li Meng1,Chen Jiaxin1,Zhang Jian1,Li Chunquan1

Affiliation:

1. School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing 163319, China

2. Department of Pharmacology, Daqing Campus, Harbin Medical University, Daqing 163319, China

Abstract

Abstract Transcription factors (TFs) and their target genes have important functions in human diseases and biological processes. Gene expression profile analysis before and after knockdown or knockout is one of the most important strategies for obtaining target genes of TFs and exploring TF functions. Human gene expression profile datasets with TF knockdown and knockout are accumulating rapidly. Based on the urgent need to comprehensively and effectively collect and process these data, we developed KnockTF (http://www.licpathway.net/KnockTF/index.html), a comprehensive human gene expression profile database of TF knockdown and knockout. KnockTF provides a number of resources for human gene expression profile datasets associated with TF knockdown and knockout and annotates TFs and their target genes in a tissue/cell type-specific manner. The current version of KnockTF has 570 manually curated RNA-seq and microarray datasets associated with 308 TFs disrupted by different knockdown and knockout techniques and across multiple tissue/cell types. KnockTF collects upstream pathway information of TFs and functional annotation results of downstream target genes. It provides details about TFs binding to promoters, super-enhancers and typical enhancers of target genes. KnockTF constructs a TF-differentially expressed gene network and performs network analyses for genes of interest. KnockTF will help elucidate TF-related functions and potential biological effects.

Funder

National Natural Science Foundation of China

National Science Foundation

Yu Weihan Outstanding Youth Training Fund of Harbin Medical University

Wu Liande Youth Science Research Fund of Harbin Medical University

Scientific Research Fund of Harbin Medical University

Publisher

Oxford University Press (OUP)

Subject

Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3