Why is there an “oversupply” of human ovarian follicles?

Author:

Lawley Sean D1,Johnson Joshua2

Affiliation:

1. University of Utah Department of Mathematics, , Salt Lake City, UT , USA

2. University of Colorado Denver (AMC) Building RC2 Department of Obstetrics and Gynecology, , Aurora, CO , USA

Abstract

Abstract Women are born with hundreds of thousands to over a million primordial ovarian follicles (PFs) in their ovarian reserve. However, only a few hundred PFs will ever ovulate and produce a mature egg. Why are hundreds of thousands of PFs endowed around the time of birth when far fewer follicles are required for ongoing ovarian endocrine function and only a few hundred will survive to ovulate? Recent experimental, bioinformatics, and mathematical analyses support the hypothesis that PF growth activation (PFGA) is inherently stochastic. In this paper, we propose that the oversupply of PFs at birth enables a simple stochastic PFGA mechanism to yield a steady supply of growing follicles that lasts for several decades. Assuming stochastic PFGA, we apply extreme value theory to histological PF count data to show that the supply of growing follicles is remarkably robust to a variety of perturbations and that the timing of ovarian function cessation (age of natural menopause) is surprisingly tightly controlled. Though stochasticity is often viewed as an obstacle in physiology and PF oversupply has been called “wasteful,” this analysis suggests that stochastic PFGA and PF oversupply function together to ensure robust and reliable female reproductive aging.

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,General Medicine,Reproductive Medicine

Reference37 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3