Kinetically inert manganese (II)-based hybrid micellar complexes for magnetic resonance imaging of lymph node metastasis

Author:

Chen Kai1,Cai Zhongyuan1,Cao Yingzi1,Jiang Lingling1,Jiang Yuting1,Gu Haojie1,Fu Shengxiang1,Xia Chunchao2,Lui Su2,Gong Qiyong345ORCID,Song Bin26,Ai Hua12

Affiliation:

1. National Engineering Research Center for Biomaterials, Sichuan University , Chengdu 610064, China

2. Department of Radiology, West China Hospital, Sichuan University , Chengdu 610041, China

3. Huaxi MR Research Center (HMRRC), Department of Radiology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041 , China

4. Functional and Molecular Imaging Key Laboratory of Sichuan Province, Key Laboratory of Transplant Engineering and Immunology, NHC, Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041 , China

5. Department of Radiology, West China Xiamen Hospital of Sichuan University, Fujian, Xiamen 361000, China

6. Department of Radiology, Sanya People’s Hospital, Sanya 572000, China

Abstract

Abstract The localization and differential diagnosis of the sentinel lymph nodes (SLNs) are particularly important for tumor staging, surgical planning and prognosis. In this work, kinetically inert manganese (II)-based hybrid micellar complexes (MnCs) for magnetic resonance imaging (MRI) were developed using an amphiphilic manganese-based chelate (C18-PhDTA-Mn) with reliable kinetic stability and self-assembled with a series of amphiphilic PEG-C18 polymers of different molecular weights (C18En, n = 10, 20, 50). Among them, the probes composed by 1:10 mass ratio of manganese chelate/C18En had slightly different hydrodynamic particle sizes with similar surface charges as well as considerable relaxivities (∼13 mM−1 s−1 at 1.5 T). In vivo lymph node imaging in mice revealed that the MnC MnC-20 formed by C18E20 with C18-PhDTA-Mn at a hydrodynamic particle size of 5.5 nm had significant signal intensity brightening effect and shortened T1 relaxation time. At an imaging probe dosage of 125 μg Mn/kg, lymph nodes still had significant signal enhancement in 2 h, while there is no obvious signal intensity alteration in non-lymphoid regions. In 4T1 tumor metastatic mice model, SLNs showed less signal enhancement and smaller T1 relaxation time variation at 30 min post-injection, when compared with normal lymph nodes. This was favorable to differentiate normal lymph nodes from SLN under a 3.0-T clinical MRI scanner. In conclusion, the strategy of developing manganese-based MR nanoprobes was useful in lymph node imaging.

Funder

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Biomaterials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3