Cell-Free DNA as Biomarker for Sepsis by Integration of Microbial and Host Information

Author:

Jing Qiuyu1,Leung Chi Hung Czarina2,Wu Angela Ruohao134ORCID

Affiliation:

1. Division of Life Science, Hong Kong University of Science and Technology , Hong Kong SAR , China

2. Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong , Hong Kong SAR , China

3. Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology , Hong Kong SAR , China

4. Hong Kong Branch of Guangdong Southern Marine Science and Engineering Laboratory (Guangzhou), Hong Kong University of Science and Technology , Clear Water Bay, Hong Kong SAR , China

Abstract

Abstract Background Cell-free DNA (cfDNA) is emerging as a biomarker for sepsis. Previous studies have been focused mainly on identifying blood infections or simply quantifying cfDNA. We propose that by characterizing multifaceted unexplored components, cfDNA could be more informative for assessing this complex syndrome. Methods We explored multiple aspects of cfDNA in septic and nonseptic intensive care unit (ICU) patients by metagenomic sequencing, with longitudinal measurement and integrative assessment of plasma cfDNA quantity, human cfDNA fragmentation patterns, infecting pathogens, and overall microbial composition. Results Septic patients had significantly increased cfDNA quantity and altered human cfDNA fragmentation pattern. Moreover, human cfDNA fragments appeared to comprise information about cellular oxidative stress and could indicate disease severity. Metagenomic sequencing was more sensitive than blood culture in detecting bacterial infections and allowed for simultaneous detection of viral pathogens. We found differences in microbial composition between septic and nonseptic patients and between survivors and nonsurvivors by 28-day mortality, both on the first day of ICU admission and across the study period. By integrating all the information into a machine learning model, we achieved improved performance in identifying sepsis and prediction of clinical outcome for ICU patients with areas under the curve of 0.992 (95% CI 0.969–1.000) and 0.802 (95% CI 0.605–0.999), respectively. Conclusions We were able to diagnose sepsis and predict mortality as soon as the first day of ICU admission by integrating multifaceted cfDNA information obtained in a single metagenomic assay; this approach could provide important advantages for clinical management and for improving outcomes in ICU patients.

Publisher

Oxford University Press (OUP)

Subject

Biochemistry (medical),Clinical Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3