Molecular Diagnosis of a Novel Coronavirus (2019-nCoV) Causing an Outbreak of Pneumonia

Author:

Chu Daniel K W1,Pan Yang234,Cheng Samuel M S1,Hui Kenrie P Y1,Krishnan Pavithra1,Liu Yingzhi1,Ng Daisy Y M1,Wan Carrie K C1,Yang Peng234,Wang Quanyi23,Peiris Malik1,Poon Leo L M1

Affiliation:

1. School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong

2. Beijing Center for Disease Prevention and Control, Beijing, China

3. Beijing Research Center for Preventive Medicine, Beijing, China

4. School of Public Health, Capital Medical University, Beijing, China

Abstract

Abstract Background A novel coronavirus of zoonotic origin (2019-nCoV) has recently been identified in patients with acute respiratory disease. This virus is genetically similar to SARS coronavirus and bat SARS-like coronaviruses. The outbreak was initially detected in Wuhan, a major city of China, but has subsequently been detected in other provinces of China. Travel-associated cases have also been reported in a few other countries. Outbreaks in health care workers indicate human-to-human transmission. Molecular tests for rapid detection of this virus are urgently needed for early identification of infected patients. Methods We developed two 1-step quantitative real-time reverse-transcription PCR assays to detect two different regions (ORF1b and N) of the viral genome. The primer and probe sets were designed to react with this novel coronavirus and its closely related viruses, such as SARS coronavirus. These assays were evaluated using a panel of positive and negative controls. In addition, respiratory specimens from two 2019-nCoV-infected patients were tested. Results Using RNA extracted from cells infected by SARS coronavirus as a positive control, these assays were shown to have a dynamic range of at least seven orders of magnitude (2x10−4-2000 TCID50/reaction). Using DNA plasmids as positive standards, the detection limits of these assays were found to be below 10 copies per reaction. All negative control samples were negative in the assays. Samples from two 2019-nCoV-infected patients were positive in the tests. Conclusions The established assays can achieve a rapid detection of 2019n-CoV in human samples, thereby allowing early identification of patients.

Funder

National Institutes of Allergy and Infectious Diseases

National Institutes of Health

Publisher

Oxford University Press (OUP)

Subject

Biochemistry, medical,Clinical Biochemistry

Cited by 1030 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3