Forever Connected: The Lifelong Biological Consequences of Fetomaternal and Maternofetal Microchimerism

Author:

Bianchi Diana W1,Khosrotehrani Kiarash2,Way Sing Sing3,MacKenzie Tippi C4,Bajema Ingeborg5,O’Donoghue Keelin6

Affiliation:

1. National Human Genome Research Institute and Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA

2. Experimental Dermatology Group, The University of Queensland, UQ Diamantina Institute, Brisbane, Queensland, Australia

3. Division of Infectious Diseases, Center for Inflammation and Tolerance, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA

4. Center for Maternal-Fetal Precision Medicine and the Department of Surgery, University of California, San Francisco, CA, USA

5. Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands

6. Irish Centre for Maternal and Child Health (INFANT), University College Cork, Cork, Ireland

Abstract

Abstract Background Originally studied as a mechanism to understand eclampsia-related deaths during pregnancy, fetal cells in maternal blood have more recently garnered attention as a noninvasive source of fetal material for prenatal testing. In the 21st century, however, intact fetal cells have been largely supplanted by circulating cell-free placental DNA for aneuploidy screening. Instead, interest has pivoted to the ways in which fetal cells influence maternal biology. In parallel, an increasing appreciation of the consequences of maternal cells in the developing fetus has occurred. Content In this review, we highlight the potential clinical applications and functional consequences of the bidirectional trafficking of intact cells between a pregnant woman and her fetus. Fetal cells play a potential role in the pathogenesis of maternal disease and tissue repair. Maternal cells play an essential role in educating the fetal immune system and as a factor in transplant acceptance. Naturally occurring maternal microchimerism is also being explored as a source of hematopoietic stem cells for transplant in fetal hematopoietic disorders. Summary Future investigations in humans need to include complete pregnancy histories to understand maternal health and transplant success or failure. Animal models are useful to understand the mechanisms underlying fetal wound healing and/or repair associated with maternal injury and inflammation. The lifelong consequences of the exchange of cells between a mother and her child are profound and have many applications in development, health, and disease. This intricate exchange of genetically foreign cells creates a permanent connection that contributes to the survival of both individuals.

Publisher

Oxford University Press (OUP)

Subject

Biochemistry, medical,Clinical Biochemistry

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3