Predominant Hematopoietic Origin of Cell-free DNA in Plasma and Serum after Sex-mismatched Bone Marrow Transplantation

Author:

Lui Yanni YN1,Chik Ki-Wai2,Chiu Rossa WK1,Ho Cheong-Yip1,Lam Christopher WK1,Lo YM Dennis1

Affiliation:

1. Departments of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR

2. Departments of Pediatrics, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR

Abstract

Abstract Background: Despite current interest in the biology and diagnostic applications of cell-free DNA in plasma and serum, the cellular origin of this DNA is poorly understood. We used a sex-mismatched bone marrow transplantation model to study the relative contribution of hematopoietic and nonhematopoietic cells to circulating DNA. Methods: We studied 22 sex-mismatched bone marrow transplantation patients. Paired buffy coat and plasma samples were obtained from all 22 patients. Matching serum samples were also obtained from seven of them. Plasma DNA, serum DNA, and buffy coat were quantified by real-time PCR of the SRY and β-globin gene DNA. To investigate the effects of blood drawing and other preanalytical variables on plasma DNA concentrations, blood samples were also collected from 14 individuals who had not received transplants. The effects of blood sampling by syringe and needle, centrifugation, and time delay in blood processing were studied. Results: The median percentage of Y-chromosome DNA in the plasma in female patients receiving bone marrow from male donors (59.5%) differed significantly (P <0.001) from that in the male patients receiving bone marrow from female donors (6.9%). This indicated that plasma DNA in the bone marrow transplantation recipients was predominantly of donor origin. Compared with paired plasma samples, serum samples had a median 14-fold higher DNA concentration, with the additional DNA being of donor origin. Control experiments indicated that none of the three tested preanalytical variables contributed to a significant change in cell-free DNA concentration. Conclusions: After bone marrow transplantation, the DNA in plasma and serum is predominantly hematopoietic in origin. Apart from the biological implications of this observation, this finding suggests that plasma and serum can be used as alternative materials for the study of postbone marrow transplantation chimerism.

Publisher

Oxford University Press (OUP)

Subject

Biochemistry (medical),Clinical Biochemistry

Cited by 415 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3