Exploration of a Novel Noninvasive Prenatal Testing Approach for Monogenic Disorders Based on Fetal Nucleated Red Blood Cells

Author:

Li Xiaoge1234,Zhang Dejun1345,Zhao Xing1234,Huang Shasha1234,Han Mingyu1234,Wang Guojian1234,Li Yingzhuo6,Kang Dongyang1234,Zhang Xin1234,Dai Pu1234,Yuan Yongyi1234

Affiliation:

1. Department of Otolaryngology, Head and Neck Surgery, Institute of Otolaryngology, Genetic Testing Center for Deafness, Chinese PLA General Hospital , Beijing 100853 , China

2. National Clinical Research Center for Otolaryngologic Diseases , Beijing , China

3. Key Lab of Hearing Impairment Science of Ministry of Education , Beijing , China

4. Key Lab of Hearing Impairment Prevention and Treatment of Beijing , China

5. The Second Hospital of Jilin University , Changchun , China

6. Department of Information, Chinese PLA General Hospital , Beijing , China

Abstract

Abstract Background Due to technical issues related to cell-specific capture methods, amplification, and sequencing, noninvasive prenatal testing (NIPT) based on fetal nucleated red blood cells (fNRBCs) has rarely been used for the detection of monogenic disorders. Methods Maternal peripheral blood was collected from 11 families with hereditary hearing loss. After density gradient centrifugation and cellular immunostaining for multiple biomarkers, candidate individual fetal cells were harvested by micromanipulation and amplified by whole-genome amplification (WGA). Whole-exome sequencing/whole-genome sequencing (WGS) and Sanger sequencing were performed on the identified fNRBCs to determine the fetal genotype. The impact of single-cell and pooled WGA products on the sequencing quality and results was compared. A combined analysis strategy, encompassing whole-exome sequencing/WGS, haplotype analysis, and Sanger sequencing, was used to enhance the NIPT results. Results fNRBCs were harvested and identified in 81.8% (9/11) of families. The results of cell-based-NIPT (cb-NIPT) were consistent with those of invasive prenatal diagnosis in 8 families; the coincidence rate was 88.9% (8/9). The combined analysis strategy improved the success of cb-NIPT. The overall performance of pooled WGA products was better than that of individual cells. Due to a lack of alternative fetal cells or sufficient sequencing data, cb-NIPT failed in 3 families. Conclusions We developed a novel fNRBC-based NIPT method for monogenic disorders. By combining multiple analysis strategies and multiple fetal cell WGA products, the problem of insufficient genome information in a single cell was remedied. Our method has promising prospects in the field of NIPT for the detection of monogenic disorders.

Funder

National Key R&D

Publisher

Oxford University Press (OUP)

Subject

Biochemistry (medical),Clinical Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3