Quantitative assays based on the use of replicatable hybridization probes.

Author:

Lomeli H1,Tyagi S1,Pritchard C G1,Lizardi P M1,Kramer F R1

Affiliation:

1. Centro de Investigación sobre Ingeniería Genética y Biotecnología, Universidad Nacional Autónoma de México, Morelos

Abstract

Abstract Amplifiable hybridization probes--molecules with a probe sequence embedded within the sequence of a replicatable RNA--will promote the development of sensitive clinical assays. To demonstrate their utility, we prepared a recombinant RNA that contained a 30-nucleotide-long probe complementary to a conserved region of the pol gene in human immunodeficiency virus type 1 (HIV-1) mRNA. Test samples were prepared, each containing a different number of HIV-1 transcripts that served as simulated HIV-1 mRNA targets. Hybridizations were carried out in a solution containing the chaotropic salt, guanidine thiocyanate. Probe-target hybrids were isolated by reversible target capture on paramagnetic particles. The probes were then released from their targets and amplified by incubation with the RNA-directed RNA polymerase, Q beta replicase (EC 2.7.7.48). The replicase copied the probes in an exponential manner: after each round of copying, the number of RNA molecules doubled. The amount of RNA synthesized in each reaction (approximately 50 ng) was sufficient to measure without using radioisotopes. Kinetic analysis of the reactions demonstrated that the number of HIV-1 targets originally present in each sample could be determined by measuring the time it took to synthesize a particular amount of RNA (the longer the synthesis took, the fewer the number of targets originally present). The results suggest that clinical assays involving replicatable hybridization probes will be simple, accurate, sensitive, and automatable.

Publisher

Oxford University Press (OUP)

Subject

Biochemistry, medical,Clinical Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3