A commentary on ‘Patient-derived gene and protein expression signatures of NGLY1 deficiency’

Author:

Suzuki Tadashi1

Affiliation:

1. RIKEN Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, , 2-1 Hirosawa, Wako, Saitama 351-0198, Japan

Abstract

Abstract The cytosolic peptide:N-glycanase (PNGase; NGLY1 in human and PNG1 in budding yeast) is a deglycosylating enzyme widely conserved in eukaryotes. Initially, functional importance of this enzyme remained unknown as the png1Δ mutant in yeast did not exhibit any significant phenotypes. However, the discovery of NGLY1 deficiency, a rare genetic disorder with biallelic mutations in NGLY1 gene, prompted an intensification of research that has resulted in uncovering the significance of NGLY1 as well as the proteins under its influence that are involved in numerous cellular processes. A recent report by Rauscher et al. (Patient-derived gene and protein expression signatures of NGLY1 deficiency. J. Biochem. 2022; 171: 187–199) presented a comprehensive summary of transcriptome/proteome analyses of various cell types derived from NGLY1-deficient patients. The authors also provide a web application called ‘NGLY1 browser’, which will allow researchers to have access to a wealth of information on gene and protein expression signature for patients with NGLY1 deficiency.

Funder

Japan Agency for Medical Research and Development-Core Research for Evolutional Science and Technology

RIKEN Pioneering Project

NGLY1 project in Takeda-CiRA Joint Program

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Biochemistry,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3