Newly acquired N-terminal extension targets threonyl-tRNA synthetase-like protein into the multiple tRNA synthetase complex

Author:

Zhou Xiao-Long1ORCID,Chen Yun1,Zeng Qi-Yu1,Ruan Zhi-Rong1,Fang Pengfei2,Wang En-Duo13ORCID

Affiliation:

1. State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China

2. State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China

3. School of Life Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai 201210, China

Abstract

Abstract A typical feature of eukaryotic aminoacyl-tRNA synthetases (aaRSs) is the evolutionary gain of domains at either the N- or C-terminus, which frequently mediating protein–protein interaction. TARSL2 (mouse Tarsl2), encoding a threonyl-tRNA synthetase-like protein (ThrRS-L), is a recently identified aaRS-duplicated gene in higher eukaryotes, with canonical functions in vitro, which exhibits a different N-terminal extension (N-extension) from TARS (encoding ThrRS). We found the first half of the N-extension of human ThrRS-L (hThrRS-L) is homologous to that of human arginyl-tRNA synthetase. Using the N-extension as a probe in a yeast two-hybrid screening, AIMP1/p43 was identified as an interactor with hThrRS-L. We showed that ThrRS-L is a novel component of the mammalian multiple tRNA synthetase complex (MSC), and is reliant on two leucine zippers in the N-extension for MSC-incorporation in humans, and mouse cell lines and muscle tissue. The N-extension was sufficient to target a foreign protein into the MSC. The results from a Tarsl2-deleted cell line showed that it does not mediate MSC integrity. The effect of phosphorylation at various sites of hThrRS-L on its MSC-targeting is also explored. In summary, we revealed that ThrRS-L is a bona fide component of the MSC, which is mediated by a newly evolved N-extension domain.

Funder

National Key Research and Development Program of China

Natural Science Foundation of China

Chinese Academy of Sciences

Shanghai Rising-Star Program

Youth Innovation Promotion Association of the Chinese Academy of Sciences

Publisher

Oxford University Press (OUP)

Subject

Genetics

Reference43 articles.

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3