An Arabidopsis pre-RNA processing8a (prp8a) missense allele restores splicing of a subset of mis-spliced mRNAs

Author:

Llinas Roxanna J1ORCID,Xiong Jia Qi1ORCID,Clark Natalie M2ORCID,Burkhart Sarah E1ORCID,Bartel Bonnie1ORCID

Affiliation:

1. Department of Biosciences, Rice University , Houston, Texas 77005, USA

2. Department of Plant Pathology and Microbiology, Iowa State University , Ames, Iowa 50011, USA

Abstract

Abstract Eukaryotic precursor mRNAs often harbor noncoding introns that must be removed prior to translation. Accurate splicing of precursor messenger RNA depends on placement and assembly of small nuclear ribonucleoprotein (snRNP) sub-complexes of the spliceosome. Yeast (Saccharomyces cerevisiae) studies established a role in splice-site selection for PRE-RNA PROCESSING8 (PRP8), a conserved spliceosome scaffolding protein of the U5 snRNP. However, analogous splice-site selection studies in multicellular eukaryotes are lacking. Such studies are crucial for a comprehensive understanding of alternative splicing, which is extensive in plants and animals but limited in yeast. In this work, we describe an Arabidopsis (Arabidopsis thaliana) prp8a mutant that modulates splice-site selection. We isolated prp8a-14 from a screen for suppressors of pex14-6, which carries a splice-site mutation in the PEROXIN14 (PEX14) peroxisome biogenesis gene. To elucidate Arabidopsis PRP8A function in spliceosome fidelity, we combined prp8a-14 with various pex14 splice-site mutations and monitored the double mutants for physiological and molecular consequences of dysfunctional and functional peroxisomes that correspond to impaired and recovered splicing, respectively. prp8a-14 restored splicing and PEX14 function to alleles with mutations in the exonic guanine of the 5′-splice site but did not restore splicing or function to alleles with mutations in the intronic guanine of 5′- or 3′-splice sites. We used RNA-seq to reveal the systemic impact of prp8a-14 and found hundreds of differentially spliced transcripts and thousands of transcripts with significantly altered levels. Among differentially spliced transcripts, prp8a-14 significantly altered 5′- and 3′-splice-site utilization to favor sites resulting in shorter introns. This study provides a genetic platform for probing splicing in plants and hints at a role for plant PRP8 in splice-site selection.

Funder

National Institutes of Health

NIH

Robert A. Welch Foundation

United States Department of Agriculture-National Institute of Food and Agriculture

USDA-NIFA

Postdoctoral Research Fellowship

The Genome Technology Access Center

National Cancer Institute Cancer Center Support

National Center for Research Resources

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3