Reliable genotyping of recombinant genomes using a robust hidden Markov model

Author:

Campos-Martin Rafael123,Schmickler Sophia1ORCID,Goel Manish24ORCID,Schneeberger Korbinian245ORCID,Tresch Achim167ORCID

Affiliation:

1. Faculty of Medicine, University Hospital Cologne , Cologne 50937 , Germany

2. Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research , Cologne 50829 , Germany

3. Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University of Cologne, Medical Faculty , Cologne 50937 , Germany

4. Faculty for Biology, LMU Munich , Planegg-Martinsried 82152 , Germany

5. Cluster of Excellence on Plant Sciences, Heinrich-Heine University , Düsseldorf 40225 , Germany

6. CECAD, University of Cologne , Cologne 50931 , Germany

7. Center for Data and Simulation Science, University of Cologne , Cologne 50931 , Germany

Abstract

Abstract Meiotic recombination is an essential mechanism during sexual reproduction and includes the exchange of chromosome segments between homologous chromosomes. New allelic combinations are transmitted to the new generation, introducing novel genetic variation in the offspring genomes. With the improvement of high-throughput whole-genome sequencing technologies, large numbers of recombinant individuals can now be sequenced with low sequencing depth at low costs, necessitating computational methods for reconstructing their haplotypes. The main challenge is the uncertainty in haplotype calling that arises from the low information content of a single genomic position. Straightforward sliding window-based approaches are difficult to tune and fail to place recombination breakpoints precisely. Hidden Markov model (HMM)-based approaches, on the other hand, tend to over-segment the genome. Here, we present RTIGER, an HMM-based model that exploits in a mathematically precise way the fact that true chromosome segments typically have a certain minimum length. We further separate the task of identifying the correct haplotype sequence from the accurate placement of haplotype borders, thereby maximizing the accuracy of border positions. By comparing segmentations based on simulated data with known underlying haplotypes, we highlight the reasons for RTIGER outperforming traditional segmentation approaches. We then analyze the meiotic recombination pattern of segregants of 2 Arabidopsis (Arabidopsis thaliana) accessions and a previously described hyper-recombining mutant. RTIGER is available as an R package with an efficient Julia implementation of the core algorithm.

Funder

Deutsche Forschungsgemeinschaft

DFG, German Research Foundation

Germany's Excellence Strategy

European Research Council

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3