MITOGEN-ACTIVATED PROTEIN KINASE3 enhances disease resistance of edr1 mutants by phosphorylating MAPKKK5

Author:

Wang Wei12ORCID,Chen Shuling13ORCID,Zhong Guitao13ORCID,Gao Chenyang12ORCID,Zhang Qin13ORCID,Tang Dingzhong12ORCID

Affiliation:

1. State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University , Fuzhou 350002 , China

2. Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University , Fuzhou 350002 , China

3. College of Life Sciences, Fujian Agriculture and Forestry University , Fuzhou 350002 , China

Abstract

Abstract Mitogen-activated protein kinase (MAPK/MPK) cascades are key signaling modules that regulate plant immunity. ENHANCED DISEASE RESISTANCE1 (EDR1) encodes a Raf-like MAPK kinase kinase (MAPKKK) that negatively regulates plant defense in Arabidopsis (Arabidopsis thaliana). The enhanced resistance of edr1 requires MAPK KINASE4 (MKK4), MKK5, and MPK3. Although the edr1 mutant displays higher MPK3/6 activation, the mechanism by which plants increase MAPK cascade activation remains elusive. Our previous study showed that MAPKKK5 is phosphorylated at the Ser-90 residue in edr1 mutants. In this study, we demonstrated that the enhanced disease resistance of edr1 required MAPKKK5. Phospho-dead MAPKKK5S90A partially impaired the resistance of edr1, and the expression of phospho-mimetic MAPKKK5S90D in mapkkk5-2 resulted in enhanced resistance to the powdery mildew Golovinomyces cichoracearum strain UCSC1 and the bacterial pathogen Pseudomonas syringae pv. tomato (Pto) strain DC3000. Thus, Ser-90 phosphorylation in MAPKKK5 appears to play a crucial role in disease resistance. However, MAPKKK5-triggered cell death was not suppressed by EDR1. Furthermore, activated MPK3 phosphorylated the N terminus of MAPKKK5, and Ser-90 was one of the phosphorylated sites. Ser-90 phosphorylation increased MAPKKK5 stability, and EDR1 might negatively regulate MAPK cascade activation by suppressing the MPK3-mediated feedback regulation of MAPKKK5. Taken together, these results indicate that MPK3 phosphorylates MAPKKK5 to enhance MAPK cascade activation and disease resistance in edr1 mutants.

Funder

National Natural Science Foundation of China

Distinguished Young Scientists Fund of Fujian Agriculture and Forestry University of China

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3