Distribution and the evolutionary history of G-protein components in plant and algal lineages

Author:

Mohanasundaram Boominathan1ORCID,Dodds Audrey1ORCID,Kukshal Vandna2ORCID,Jez Joseph M2ORCID,Pandey Sona1ORCID

Affiliation:

1. Donald Danforth Plant Science Center , St Louis, Missouri 63132, USA

2. Department of Biology, Washington University , St Louis, Missouri 63130, USA

Abstract

Abstract Heterotrimeric G-protein complexes comprising Gα-, Gβ-, and Gγ-subunits and the regulator of G-protein signaling (RGS) are conserved across most eukaryotic lineages. Signaling pathways mediated by these proteins influence overall growth, development, and physiology. In plants, this protein complex has been characterized primarily from angiosperms with the exception of spreading-leaved earth moss (Physcomitrium patens) and Chara braunii (charophytic algae). Even within angiosperms, specific G-protein components are missing in certain species, whereas unique plant-specific variants—the extra-large Gα (XLGα) and the cysteine-rich Gγ proteins—also exist. The distribution and evolutionary history of G-proteins and their function in nonangiosperm lineages remain mostly unknown. We explored this using the wealth of available sequence data spanning algae to angiosperms representing extant species that diverged approximately 1,500 million years ago, using BLAST, synteny analysis, and custom-built Hidden Markov Model profile searches. We show that a minimal set of components forming the XLGαβγ trimer exists in the entire land plant lineage, but their presence is sporadic in algae. Additionally, individual components have distinct evolutionary histories. The XLGα exhibits many lineage-specific gene duplications, whereas Gα and RGS show several instances of gene loss. Similarly, Gβ remained constant in both number and structure, but Gγ diverged before the emergence of land plants and underwent changes in protein domains, which led to three distinct subtypes. These results highlight the evolutionary oddities and summarize the phyletic patterns of this conserved signaling pathway in plants. They also provide a framework to formulate pertinent questions on plant G-protein signaling within an evolutionary context.

Funder

National Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

Reference106 articles.

1. Comparative genomics uncovers novel structural and functional features of the heterotrimeric GTPase signaling system;Anantharaman;Gene,2011

2. Heterotrimeric G proteins interact with defense-related receptor-like kinases in Arabidopsis;Aranda-Sicilia;J Plant Physiol,2015

3. Heterotrimeric G-Protein interactions are conserved despite regulatory element loss in some plants;Bhatnagar;Plant Physiol,2020

4. An elaborate heterotrimeric G-protein family from soybean expands the diversity of plant G-protein networks;Bisht;New Phytol,2011

5. Can heterotrimeric G proteins help to feed the world?;Botella;Trends Plant Sci,2012

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3