Fabrication and evaluation of a BMP-2/dexamethasone co-loaded gelatin sponge scaffold for rapid bone regeneration

Author:

Gan Qi12,Pan Hao3,Zhang Wenjing3,Yuan Yuan1,Qian Jiangchao2,Liu Changsheng134

Affiliation:

1. Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, PR China

2. The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China

3. Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai 200237, PR China

4. Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, PR China

Abstract

Abstract Improving the osteogenic activity of BMP-2 in vivo has significant clinical application value. In this research, we use a clinical gelatin sponge scaffold loaded with BMP-2 and dexamethasone (Dex) to evaluate the osteogenic activity of dual drugs via ectopic osteogenesis in vivo. We also investigate the mechanism of osteogenesis induced by BMP-2 and Dex with C2C12, a multipotent muscle-derived progenitor cell. The results show that the gelatin scaffold with Dex and BMP-2 can significantly accelerate osteogenesis in vivo. It is indicated that compared with the BMP-2 or Dex alone, 100 nM of Dex can dramatically enhance the BMP-2-induced alkaline phosphatase activity (ALP), ALP mRNA expression and mineralization. Further studies show that 100 nM of Dex can maintain the secondary structure of BMP-2 and facilitate recognition of BMP-2 with its receptors on the surface of C2C12 cells. We also find that in C2C12, Dex has no obvious effect on the BMP-2-induced Smad1/5/8 protein expression and the STAT3-dependent pathway, but Runx2-dependent pathway is involved in the Dex-stimulated osteoblast differentiation of BMP-2 both in vitro and in vivo. Based on these results, a potential mechanism model about the synergistic osteoinductive effect of Dex and BMP-2 in C2C12 cells via Runx2 activation is proposed. This may provide a theoretical basis for the pre-clinical application of Dex and BMP-2 for bone regeneration.

Funder

Natural Science Foundation of China for Innovative Research

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Biomaterials

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3