Gene dysregulation analysis builds a mechanistic signature for prognosis and therapeutic benefit in colorectal cancer

Author:

Li Quanxue12,Dai Wentao234,Liu Jixiang24,Sang Qingqing3,Li Yi-Xue1254,Li Yuan-Yuan24

Affiliation:

1. School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China

2. Shanghai Center for Bioinformation Technology, Shanghai 201203, China

3. Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China

4. Shanghai Engineering Research Center of Pharmaceutical Translation and Shanghai Industrial Technology Institute, Shanghai 201203, China

5. CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China

Abstract

Abstract The implementation of cancer precision medicine requires biomarkers or signatures for predicting prognosis and therapeutic benefits. Most of current efforts in this field are paying much more attention to predictive accuracy than to molecular mechanistic interpretability. Mechanism-driven strategy has recently emerged, aiming to build signatures with both predictive power and explanatory power. Driven by this strategy, we developed a robust gene dysregulation analysis framework with machine learning algorithms, which is capable of exploring gene dysregulations underlying carcinogenesis from high-dimensional data with cooperativity and synergy between regulators and several other transcriptional regulation rules taken into consideration. We then applied the framework to a colorectal cancer (CRC) cohort from The Cancer Genome Atlas. The identified CRC-related dysregulations significantly covered known carcinogenic processes and exhibited good prognostic effect. By choosing dysregulations with greedy strategy, we built a four-dysregulation (4-DysReg) signature, which has the capability of predicting prognosis and adjuvant chemotherapy benefit. 4-DysReg has the potential to explain carcinogenesis in terms of dysfunctional transcriptional regulation. These results demonstrate that our gene dysregulation analysis framework could be used to develop predictive signature with mechanistic interpretability for cancer precision medicine, and furthermore, elucidate the mechanisms of carcinogenesis.

Funder

National Natural Science Foundation of China

National Key R&D Program of China

Shanghai Municipal Science and Technology

NIH CPTAC (Cancer Proteomic Tumor Analysis Consortium

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Genetics,Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3