Assembly/disassembly control of gold nanorods with uniform orientation on anionic polymer brush substrates

Author:

Yang Jingyan1,Sekizawa Yu1,Shi Xu23,Ijiro Kuniharu2,Mitomo Hideyuki24ORCID

Affiliation:

1. Graduate School of Life Science, Hokkaido University , Sapporo, Hokkaido 060-0810 , Japan

2. Research Institute for Electronic Science, Hokkaido University , Sapporo, Hokkaido 001-0021 , Japan

3. Creative Research Institution, Hokkaido University , Sapporo, Hokkaido 001-0021 , Japan

4. Institute of Multidisciplinary Research for Advanced Materials, Tohoku University , Sendai, Miyagi 980-8577 , Japan

Abstract

Abstract Sophisticated control of the spatial arrangement of gold nanorods provides significant advantages in the design of plasmonic systems. However, dynamic modulation of the gold nanorod spatial arrangements remains challenging. Here, we present a novel strategy for dynamic control of thermo-responsive gold nanorods with uniform alignment on a solid substrate using polymer brushes. In this system, cationic and thermo-responsive gold nanorods were immobilized into anionic polymer brushes via moderate electrostatic interactions, providing vertically aligned gold nanorod arrays. Upon heating, the gold nanorods were assembled while maintaining their vertical orientation within the polymer brushes. They returned to the original state upon cooling, indicating reversible assembly/disassembly. It is noticeable that this system exhibits rapid changes in nanostructure arrangement even when immobilized in the polymer brush substrate on a solid substrate rather than those dispersed in solution. Importantly, the gold nanorods showed good adhesion stability in polymer brushes without any significant detachment during washing and thermal cycling processes but performed assembly formation even at largely separated conditions, indicating the traveling of considerable distances similar to the lateral diffusion of membrane proteins in cell membranes. In addition to providing unprecedented control over gold nanorod spatial configurations, our approach introduces a versatile platform for developing advanced plasmonic devices.

Funder

KAKENHI

JST SPRING

Creative Research Institute

Ministry of Education, Culture, Sports, Science, and Technology of Japan

Advanced Research Infrastructure for Materials and Nanotechnology in Japan

Publisher

Oxford University Press (OUP)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3