Carbon-doped Bi2MoO6 nanosheet self-assembled microspheres for photocatalytic degradation of organic dyes

Author:

Chen Nali1,Hu Mengyu1,Gou Lulu1,Tan Lin1,Zhao Dan1,Feng Huixia1

Affiliation:

1. School of Petrochemical Technology, Lanzhou University of Technology , Lanzhou 730050 , P. R. China

Abstract

Abstract In this paper, carbon-doped Bi2MoO6 (C-Bi2MoO6) nanosheet self-assembled microspheres were prepared by using the solvothermal-calcination route to improve the photocatalytic activity of Bi2MoO6. The characterization results of x-ray diffractometry, Fourier transform infrared spectrometry, Raman scattering, scanning electron microscopy, transmission electron microscopy, BET specific surface area test, and x-ray photoelectron spectrometry indicated that C replaced the O2− anion in the Bi2MoO6 lattice, thinning the nanosheets, decreasing the size of the microspheres, and increasing the specific surface area of the Bi2MoO6. Ultraviolet–visible diffuse reflectance spectroscopy, photoluminescence, electrochemical impedance spectroscopy, transient photocurrent, and linear sweep voltammetry (LSV) spectroscopy demonstrated that the carbon doping reduced the band gap energy, raised the conduction band, and enhanced the photogenerated electron–hole pairs separation efficiency of Bi2MoO6. Benefiting from these favorable changes, the C-Bi2MoO6 microspheres prepared at a molar ratio of C to Bi of 4 (4C-Bi2MoO6) exhibited the highest photocatalytic activity, and the photocatalytic degradation rate constant of rhodamine B by 4C-Bi2MoO6 microspheres was almost 2.26 times that by pristine Bi2MoO6 under simulated solar light. 4C-Bi2MoO6 microspheres (0.2 g/L) presented excellent photocatalytic performance toward RhB (20 mg/L) at pH value 1 and could remove 98.31% of the RhB within 120 min. In addition, 4C-Bi2MoO6 microspheres also possessed a high photocatalytic activity toward methylene blue and tetracycline. 4C-Bi2MoO6 microspheres assembled from thin nanosheets can be used as effective photocatalysts to degrade toxic organic molecules from wastewater.

Funder

Special Project on Innovative Methods Fund Program

Ministry of Science and Technology of the People's

Republic of China

National Natural Science Foundation of China

National Western region Natural Science Foundation

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3