Disruption of Biofilm by Bacteriophages in Clinically Relevant Settings

Author:

Kovacs Christopher J12,Rapp Erika M1,McKenzie Sophia M1,Mazur Michael Z1,Mchale Riley P1,Brasko Briana1,Min Michael Y1,Burpo F John1,Barnhill Jason C1ORCID

Affiliation:

1. Department of Chemistry and Life Science, United States Military Academy , West Point, NY 10996, USA

2. Defense Threat Reduction Agency , Fort Belvoir, VA 22060, USA

Abstract

ABSTRACT Introduction Antibiotic-resistant bacteria are a growing threat to civilian and military health today. Although infections were once easily treatable by antibiotics and wound cleaning, the frequent mutation of bacteria has created strains impermeable to antibiotics and physical attack. Bacteria further their pathogenicity because of their ability to form biofilms on wounds, medical devices, and implant surfaces. Methods for treating biofilms in clinical settings are limited, and when formed by antibiotic-resistant bacteria, can generate chronic infections that are recalcitrant to available therapies. Bacteriophages are natural viral predators of bacteria, and their ability to rapidly destroy their host has led to increased attention in potential phage therapy applications. Materials and Methods The present article sought to address a knowledge gap in the available literature pertaining to the usage of bacteriophage in clinically relevant settings and the resolution of infections particular to military concerns. PRISMA guidelines were followed for a systematic review of available literature that met the criteria for analysis and inclusion. The research completed for this review article originated from the U.S. Military Academy’s library “Scout” search engine, which complies results from 254 available databases (including PubMed, Google Scholar, and SciFinder). The search criteria included original studies that employed bacteriophage use against biofilms, as well as successful phage therapy strategies for combating chronic bacterial infections. We specifically explored the use of bacteriophage against antibiotic- and treatment-resistant bacteria. Results A total of 80 studies were identified that met the inclusion criteria following PRISMA guidelines. The application of bacteriophage has been demonstrated to robustly disrupt biofilm growth in wounds and on implant surfaces. When traditional therapies have failed to disrupt biofilms and chronic infections, a combination of these treatments with phage has proven to be effective, often leading to complete wound healing without reinfection. Conclusions This review article examines the available literature where bacteriophages have been utilized to treat biofilms in clinically relevant settings. Specific attention is paid to biofilms on implant medical devices, biofilms formed on wounds, and clinical outcomes, where phage treatment has been efficacious. In addition to the clinical benefit of phage therapies, the military relevance and treatment of combat-related infections is also examined. Phages offer the ability to expand available treatment options in austere environments with relatively low cost and effort, allowing the impacted warfighter to return to duty quicker and healthier.

Publisher

Oxford University Press (OUP)

Subject

Public Health, Environmental and Occupational Health,General Medicine

Reference80 articles.

1. The EPS matrix: the “house of biofilm cells”;Flemming;J Bacteriol,2007

2. Biofilms;Lopez;Cold Spring Harb Perspect Biol,2010

3. Biofilm matrixome: extracellular components in structured microbial communities;Karygianni;Trends Microbiol,2020

4. Extracellular polymeric substances, a key element in understanding biofilm phenotype;Di Martino;AIMS Microbiol,2018

5. Medical biofilms;Bryers;Biotechnol Bioeng,2008

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3