Behind Armor Blunt Trauma: Liver Injuries Using a Live Animal Model

Author:

Yoganandan Narayan1ORCID,Shah Alok1,Koser Jared1ORCID,Stemper Brian D2,Somberg Lewis1,Chancey Valeta Carol3,McEntire Joseph3

Affiliation:

1. Department of Neurosurgery and Surgery, Medical College of Wisconsin , Milwaukee, WI 53226, USA

2. Department of Biomedical Engineering, Medical College of Wisconsin & Marquette University , Milwaukee, WI 53226, USA

3. Injury Biomechanics and Protection Group, U.S. Army Aeromedical Research Laboratory , Fort Novosel, AL 36362, USA

Abstract

ABSTRACT Introduction While the 44-mm clay penetration criterion was developed in the 1970s for soft body armor applications, and the researchers acknowledged the need to conduct additional tests, the same behind the armor blunt trauma displacement limit is used for both soft and hard body armor evaluations and design considerations. Because the human thoraco-abdominal contents are heterogeneous, have different skeletal coverage, and have different functional requirements, the same level of penetration limit does not imply the same level of protection. It is important to determine the regional responses of different thoraco-abdominal organs to better describe human tolerance and improve the current behind armor blunt trauma standard. The purpose of this study was to report on the methods, procedures, and data collected from swine. Materials and Methods Live swine tests were conducted after obtaining approvals from the local institution and the Army Care and Use Review Office of the U.S. Department of Defense. Trachea tubes and an intravenous line were introduced before administering anesthesia. Pressure transducers were inserted into the lungs and aorta. An indenter simulating the backface deformation profiles produced by body armor from military-relevant ballistics to human cadavers was used to deliver impact loading to the liver region. A triaxial accelerometer was included in the indenter design. The animals were monitored for 6 hours, necropsies were performed, and injuries were identified. Biomechanical data of the energy, velocity, deflection, viscous criterion, force, and impulse variables were obtained for each test. Results Peak accelerations, velocities, deflections, forces, impulse, and energies ranged from 897 to 5,808 g, 21 to 59 m/s, 1.96 to 8.87 cm, 2.3 to 13.1 kN, 1.1 to 7.1 Ns, and 58 to 387 J, respectively. The peak viscous criterion ranged from 0.8 to 5.8 m/s. All animals survived the 6-hour survival period. Three animals responded with liver lacerations while the remaining 4 did not have any injuries. Conclusion The experimental design based on parallel tests with whole body human cadavers and cadaver swine was found to be successful in delivering controlled impacts to the liver region of live swine and reproducing liver injuries. Previously used biomechanical measures as potential candidates for injury criteria development were obtained. Using this proven model, tests with additional samples are needed to develop injury risk curves for liver impacts and obtain regional (liver) injury criteria.

Funder

U.S. Army Medical Research and Development Command

Publisher

Oxford University Press (OUP)

Reference21 articles.

1. Origin of the 44-mm behind-armor blunt trauma standard;Hanlon;Mil Med,2012

2. Backface signatures of soft body armors and the associated trauma effects. ARCSL-TR-77055;Prather,1977

3. A novel paradigm to develop regional thoracoabdominal criteria for behind armor blunt trauma based on original data;Yoganandan;Mil Med,2023

4. Injury risk in behind armor blunt thoracic trauma;Bass;Int J Occup Saf Ergon,2006

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3