Proteomic perspective of azole resistance in Aspergillus fumigatus biofilm extracellular matrix in response to itraconazole

Author:

Wei Tianqi1,Zheng Nan2,Zheng Hailin1,Chen Yuping1,Hong Pianpian1,Liu Weida134,Liu Musang1ORCID

Affiliation:

1. Institute of Dermatology, Chinese Academy of Medical Science and Peking Union Medical College , Nanjing , China

2. Medical School, Nanjing University , Nanjing , China

3. Center for Global Health, School of Public Health, Nanjing Medical University , Nanjing , China

4. Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs , Nanjing , China

Abstract

Abstract Azole-resistant Aspergillus fumigatus makes a major challenge to the chemotherapy for invasive aspergillosis, whereas cyp51A gene mutation is the most dominant mechanism for azole resistance. Moreover, biofilm contributes to drug resistance for A. fumigatus, and extracellular matrix (ECM) is essential to protect live cells from antifungal drugs. Therefore, we performed a comparative proteomic study on the biofilm ECM of both the wild-type and azole-resistant strains of A. fumigatus under azole pressure. In total, 2377 proteins were identified, of which 480 and 604 proteins with differential expression were obtained from the wild-type and azole-resistant A. fumigatus in exposure to itraconazole respectively (fold change > 2 or < 0.5, P-value < .05). We found that a high proportion of regulated proteins were located in the cytoplasm, nucleus, and mitochondria. Meanwhile, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses revealed that the metabolic process and ribosome pathway were significantly enriched. Particularly, differentially expressed proteins in response to azole pressure of both the wild-type and resistant strains were further analyzed. Our results indicated that these changes in biofilm ECM proteins were related to ergosterol synthesis, oxidative stress, efflux pumps, DNA repair, DNA replication, and transcription.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Natural Science Foundation of Jiangsu Province

Publisher

Oxford University Press (OUP)

Subject

Infectious Diseases,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3