Affiliation:
1. State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology 10 and Epidemiology, Beijing 100071, China
Abstract
Abstract
Explosively emerging SARS-CoV-2 variants challenge current nomenclature schemes based on genetic diversity and biological significance. Genomic composition-based machine learning methods have recently performed well in identifying phenotype–genotype relationships. We introduced a framework involving dinucleotide (DNT) composition representation (DCR) to parse the general human adaptation of RNA viruses and applied a three-dimensional convolutional neural network (3D CNN) analysis to learn the human adaptation of other existing coronaviruses (CoVs) and predict the adaptation of SARS-CoV-2 variants of concern (VOCs). A markedly separable, linear DCR distribution was observed in two major genes—receptor-binding glycoprotein and RNA-dependent RNA polymerase (RdRp)—of six families of single-stranded (ssRNA) viruses. Additionally, there was a general host-specific distribution of both the spike proteins and RdRps of CoVs. The 3D CNN based on spike DCR predicted a dominant type II adaptation of most Beta, Delta and Omicron VOCs, with high transmissibility and low pathogenicity. Type I adaptation with opposite transmissibility and pathogenicity was predicted for SARS-CoV-2 Alpha VOCs (77%) and Kappa variants of interest (58%). The identified adaptive determinants included D1118H and A570D mutations and local DNTs. Thus, the 3D CNN model based on DCR features predicts SARS-CoV-2, a major type II human adaptation and is qualified to predict variant adaptation in real time, facilitating the risk-assessment of emerging SARS-CoV-2 variants and COVID-19 control.
Funder
Capital’s Funds for Health Improvement and Research
National Institute of Biomedical Innovation
National Natural Science Foundation of China
Publisher
Oxford University Press (OUP)
Subject
Molecular Biology,Information Systems
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献