Persistent spectral simplicial complex-based machine learning for chromosomal structural analysis in cellular differentiation

Author:

Gong Weikang12,Wee JunJie2,Wu Min-Chun2,Sun Xiaohan1,Li Chunhua1,Xia Kelin2

Affiliation:

1. Faculty of Environmental and Life Sciences , Beijing University of Technology, Beijing, China 100124

2. Division of Mathematical Sciences , School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371

Abstract

Abstract The three-dimensional (3D) chromosomal structure plays an essential role in all DNA-templated processes, including gene transcription, DNA replication and other cellular processes. Although developing chromosome conformation capture (3C) methods, such as Hi-C, which can generate chromosomal contact data characterized genome-wide chromosomal structural properties, understanding 3D genomic nature-based on Hi-C data remains lacking. Here, we propose a persistent spectral simplicial complex (PerSpectSC) model to describe Hi-C data for the first time. Specifically, a filtration process is introduced to generate a series of nested simplicial complexes at different scales. For each of these simplicial complexes, its spectral information can be calculated from the corresponding Hodge Laplacian matrix. PerSpectSC model describes the persistence and variation of the spectral information of the nested simplicial complexes during the filtration process. Different from all previous models, our PerSpectSC-based features provide a quantitative global-scale characterization of chromosome structures and topology. Our descriptors can successfully classify cell types and also cellular differentiation stages for all the 24 types of chromosomes simultaneously. In particular, persistent minimum best characterizes cell types and Dim (1) persistent multiplicity best characterizes cellular differentiation. These results demonstrate the great potential of our PerSpectSC-based models in polymeric data analysis.

Funder

Nanyang Technological University

Ministry of Education

National Natural Science Foundation of China

China Scholarship Council

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Information Systems

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3