LBCEPred: a machine learning model to predict linear B-cell epitopes

Author:

Alghamdi Wajdi1,Attique Muhammad23,Alzahrani Ebraheem4,Ullah Malik Zaka4,Khan Yaser Daanial2ORCID

Affiliation:

1. Department of Information Technology, Faculty of Computing and Information Technology, King Abdulaziz University, P.O. Box 80221, Jeddah, Saudi Arabia

2. Department of Computer Science, University of Management and Technology, Lahore, 54000, Pakistan

3. Department of Information Technology, University of Gujrat, Gujrat, 50700, Pakistan

4. Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia

Abstract

Abstract B-cell epitopes have the capability to recognize and attach to the surface of antigen receptors to stimulate the immune system against pathogens. Identification of B-cell epitopes from antigens has a great significance in several biomedical and biotechnological applications, provides support in the development of therapeutics, design and development of an epitope-based vaccine and antibody production. However, the identification of epitopes with experimental mapping approaches is a challenging job and usually requires extensive laboratory efforts. However, considerable efforts have been placed for the identification of epitopes using computational methods in the recent past but deprived of considerable achievements. In this study, we present LBCEPred, a python-based web-tool (http://lbcepred.pythonanywhere.com/), build with random forest classifier and statistical moment-based descriptors to predict the B-cell epitopes from the protein sequences. LBECPred outperforms all sequence-based available models that are currently in use for the B-cell epitopes prediction, with 0.868 accuracy value and 0.934 area under the curve. Moreover, the prediction performance of proposed models compared to other state-of-the-art models is 56.3% higher on average for Mathews Correlation Coefficient. LBCEPred is easy to use tool even for novice users and has also shown the models stability and reliability, thus we believe in its significant contribution to the research community and the area of bioinformatics.

Funder

King Abdulaziz University

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Information Systems

Reference76 articles.

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3