Solving the frequency-domain acoustic VTI wave equation using physics-informed neural networks

Author:

Song Chao1ORCID,Alkhalifah Tariq1,Waheed Umair Bin2

Affiliation:

1. Department of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia

2. Department of Geosciences, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia

Abstract

SUMMARY Frequency-domain wavefield solutions corresponding to the anisotropic acoustic wave equation can be used to describe the anisotropic nature of the Earth. To solve a frequency-domain wave equation, we often need to invert the impedance matrix. This results in a dramatic increase in computational cost as the model size increases. It is even a bigger challenge for anisotropic media, where the impedance matrix is far more complex. In addition, the conventional finite-difference method produces numerical dispersion artefacts in solving acoustic wave equations for anisotropic media. To address these issues, we use the emerging paradigm of physics-informed neural networks (PINNs) to obtain wavefield solutions for an acoustic wave equation for transversely isotropic (TI) media with a vertical axis of symmetry (VTI). PINNs utilize the concept of automatic differentiation to calculate their partial derivatives, which are free of numerical dispersion artefacts. Thus, we use the wave equation as a loss function to train a neural network to provide functional solutions to the acoustic VTI form of the wave equation. Instead of predicting the pressure wavefields directly, we solve for the scattered pressure wavefields to avoid dealing with the point-source singularity. We use the spatial coordinates as input data to the network, which outputs the real and imaginary parts of the scattered wavefields and auxiliary function. After training a deep neural network, we can evaluate the wavefield at any point in space almost instantly using this trained neural network without calculating the impedance matrix inverse. We demonstrate these features on a simple 2-D anomaly model and a 2-D layered model. Additional tests on a modified 3-D Overthrust model and a 2-D model with irregular topography further validate the effectiveness of the proposed method.

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

Reference70 articles.

1. Acoustic approximations for processing in transversely isotropic media;Alkhalifah;Geophysics,1998

2. An acoustic wave equation for anisotropic media;Alkhalifah;Geophysics,2000

3. Research note: insights into the data dependency on anisotropy: an inversion prospective;Alkhalifah;Geophys. Prospect.,2016

4. Wavefield solutions from machine learned functions that approximately satisfy the wave equation;Alkhalifah,2020

5. Machine learned greens functions that approximately satisfy the wave equation;Alkhalifah,2020

Cited by 116 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3