A hidden human proteome encoded by ‘non-coding’ genes

Author:

Lu Shaohua1,Zhang Jing1,Lian Xinlei12,Sun Li1,Meng Kun1,Chen Yang1,Sun Zhenghua1,Yin Xingfeng1,Li Yaxing1,Zhao Jing1,Wang Tong1ORCID,Zhang Gong1,He Qing-Yu1

Affiliation:

1. Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China

2. Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China

Abstract

Abstract It has been a long debate whether the 98% ‘non-coding’ fraction of human genome can encode functional proteins besides short peptides. With full-length translating mRNA sequencing and ribosome profiling, we found that up to 3330 long non-coding RNAs (lncRNAs) were bound to ribosomes with active translation elongation. With shotgun proteomics, 308 lncRNA-encoded new proteins were detected. A total of 207 unique peptides of these new proteins were verified by multiple reaction monitoring (MRM) and/or parallel reaction monitoring (PRM); and 10 new proteins were verified by immunoblotting. We found that these new proteins deviated from the canonical proteins with various physical and chemical properties, and emerged mostly in primates during evolution. We further deduced the protein functions by the assays of translation efficiency, RNA folding and intracellular localizations. As the new protein UBAP1-AST6 is localized in the nucleoli and is preferentially expressed by lung cancer cell lines, we biologically verified that it has a function associated with cell proliferation. In sum, we experimentally evidenced a hidden human functional proteome encoded by purported lncRNAs, suggesting a resource for annotating new human proteins.

Funder

National Key Research and Development Program of China

National Basic Research Program ‘973’ of China

Key Project for Research and Development of Guangdong province

National Natural and Science Foundation of China

Guangdong Key R&D Program

Publisher

Oxford University Press (OUP)

Subject

Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3