Inhibition of cyclin-dependent kinase 7 mitigates doxorubicin cardiotoxicity and enhances anticancer efficacy

Author:

Chen Jingrui1,Wei Jing1,Xia Peng1,Liu Yuening1,Belew Mahder Dawit1,Toohill Ryan1,Wu Boyang Jason1,Cheng Zhaokang1ORCID

Affiliation:

1. Department of Pharmaceutical Sciences, Washington State University , 412 E. Spokane Falls Blvd., Spokane, WA 99202-2131 , USA

Abstract

Abstract Aims The anthracycline family of anticancer agents such as doxorubicin (DOX) can induce apoptotic death of cardiomyocytes and cause cardiotoxicity. We previously reported that DOX-induced apoptosis is accompanied by cardiomyocyte cell cycle re-entry. Cell cycle progression requires cyclin-dependent kinase 7 (CDK7)-mediated activation of downstream cell cycle CDKs. This study aims to determine whether CDK7 can be targeted for cardioprotection during anthracycline chemotherapy. Methods and results DOX exposure induced CDK7 activation in mouse heart and isolated cardiomyocytes. Cardiac-specific ablation of Cdk7 attenuated DOX-induced cardiac dysfunction and fibrosis. Treatment with the covalent CDK7 inhibitor THZ1 also protected against DOX-induced cardiomyopathy and apoptosis. DOX treatment induced activation of the proapoptotic CDK2–FOXO1–Bim axis in a CDK7-dependent manner. In response to DOX, endogenous CDK7 directly bound and phosphorylated CDK2 at Thr160 in cardiomyocytes, leading to full CDK2 kinase activation. Importantly, inhibition of CDK7 further suppressed tumour growth when used in combination with DOX in an immunocompetent mouse model of breast cancer. Conclusion Activation of CDK7 is necessary for DOX-induced cardiomyocyte apoptosis and cardiomyopathy. Our findings uncover a novel proapoptotic role for CDK7 in cardiomyocytes. Moreover, this study suggests that inhibition of CDK7 attenuates DOX-induced cardiotoxicity but augments the anticancer efficacy of DOX. Therefore, combined administration of CDK7 inhibitor and DOX may exhibit diminished cardiotoxicity but superior anticancer activity.

Funder

National Heart, Lung, and Blood Institute

NIH

WSU College of Pharmacy and Pharmaceutical Sciences

National Cancer Institute

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3