The microbiological diagnostic performance of metagenomic next-generation sequencing in patients with infectious diseases

Author:

Yuan Lei1,Zhu Qing1,Chen Qiang1,Lai Lan Min1,Liu Peng1,Liu Yang1

Affiliation:

1. Department of Clinical Laboratory, The First Affiliated Hospital of Nanchang University , Nanchang, Jiangxi , China

Abstract

Abstract Objective Metagenomic next-generation sequencing (mNGS) can be used to detect pathogens in clinical infectious diseases through the sequencing analysis of microbial and host nucleic acids in clinical samples. This study aimed to assess the diagnostic performance of mNGS in patients with infections. Methods In this study, 641 patients with infectious diseases were enrolled. These patients simultaneously underwent pathogen detection by both mNGS and microbial culture. Through statistical analysis, we judged the diagnostic performance of mNGS and microbial culture on different pathogens. Results Among 641 patients, 276 cases of bacteria and 95 cases of fungi were detected by mNGS, whereas 108 cases of bacteria and 41 cases of fungi were detected by traditional cultures. Among all mixed infections, combined bacterial and viral infections were the highest (51%, 87/169), followed by combined bacterial with fungal infections (16.57%, 28/169) and mixed bacterial, fungal, and viral infections (13.61%, 23/169). Among all sample types, bronchoalveolar lavage fluid (BALF) samples had the highest positive rate (87.8%, 144/164), followed by sputum (85.4%, 76/89) and blood samples (61.2%, 158/258). For the culture method, sputum samples had the highest positive rate (47.2%, 42/89), followed by BALF (37.2%, 61/164). The positive rate of mNGS was 69.89% (448/641), which was significantly higher than that of traditional cultures (22.31% [143/641]) (P < .05). Conclusions Our results show that mNGS is an effective tool for the rapid diagnosis of infectious diseases. Compared with traditional detection methods, mNGS also showed obvious advantages in mixed infections and infections with uncommon pathogens.

Funder

Jiangxi Provincial Department of Education

Jiangxi Traditional Chinese Medicine

Publisher

Oxford University Press (OUP)

Subject

Biochemistry (medical),Clinical Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3