Computational studies on glycosaminoglycan recognition of sialyl transferases

Author:

Sankaranarayanan Nehru Viji123ORCID,Sistla Srinivas123,Nagarajan Balaji123ORCID,Chittum John E123ORCID,Lau Joseph T Y4ORCID,Desai Umesh R123ORCID

Affiliation:

1. Department of Medicinal Chemistry, Virginia Commonwealth University , Virginia 23298, Richmond , USA

2. Drug Discovery and Development , Virginia Commonwealth University, , Virginia 23219, Richmond , USA

3. Institute for Structural Biology , Virginia Commonwealth University, , Virginia 23219, Richmond , USA

4. Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center , Buffalo 14263, NY , USA

Abstract

Abstract Despite decades of research, glycosaminoglycans (GAGs) have not been known to interact with sialyl transferases (STs). Using our in-house combinatorial virtual library screening (CVLS) technology, we studied seven human isoforms, including ST6GAL1, ST6GAL2, ST3GAL1, ST3GAL3, ST3GAL4, ST3GAL5, and ST3GAL6, and predicted that GAGs, especially heparan sulfate (HS), are likely to differentially bind to STs. Exhaustive CVLS and molecular dynamics studies suggested that the common hexasaccharide sequence of HS preferentially recognized ST6GAL1 in a site overlapping the binding site of the donor substrate CMP-Sia. Interestingly, CVLS did not ascribe any special role for the rare 3-O-sulfate modification of HS in ST6GAL1 recognition. The computational predictions were tested using spectrofluorimetric studies, which confirmed preferential recognition of HS over other GAGs. A classic chain length-dependent binding of GAGs to ST6GAL1 was observed with polymeric HS displaying a tight affinity of ~65 nM. Biophysical studies also confirmed a direct competition between CMP-Sia and an HS oligosaccharide and CS polysaccharide for binding to ST6GAL1. Overall, our novel observation that GAGs bind to ST6GAL1 with high affinity and compete with the donor substrate is likely to be important because modulation of sialylation of glycan substrates on cells has considerable physiological/pathological consequences. Our work also brings forth the possibility of developing GAG-based chemical probes of ST6GAL1.

Funder

National Institute of Allergy and Infectious Diseases

National Heart, Lung, and Blood Institute

National Cancer Institute

National Center for Research Resources

Publisher

Oxford University Press (OUP)

Subject

Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3