Myriad mechanisms: factors regulating the synthesis of aberrant mucin-type O-glycosylation found on cancer cells

Author:

Cull Joanna1,Pink Ryan C1,Samuel Priya1,Brooks Susan A1

Affiliation:

1. School of Biological & Medical Sciences, Oxford Brookes University , Headington, Oxford OX3 0BP ,

Abstract

Abstract Mucin-type O-linked glycosylation is initiated by the transfer of a single N-acetyl-D-galactosamine (GalNAc) to the hydroxyl group of either a serine (Ser) or threonine (Thr) residue. This process is catalysed by a portfolio of twenty isoenzymes, the UDP-N-acetyl-α-D-galactosamine:polypeptide N-acetylgalactosaminyltransferases (ppGalNAc-Ts, GalNAc-Ts or GALNTs) to create the Thomsen nouvelle (Tn) antigen (GalNAcα1-O-Ser/Thr ). In healthy adult cells, Tn antigen is further elaborated by the action of specific glycosyltransferases to either form one of eight core structures, which themselves can be extended to form more complex glycans, or into sialyl Tn or sialyl core 1 (sialyl T), where sialylation terminates chain extension. These O-glycans, produced through mucin-type O-linked glycosylation, are a feature of many secreted and membrane-bound proteins, and are fundamental in a wide range of biological functions. Dysregulation of this process, often resulting in the exposure of usually cryptic truncated O-glycans including Tn antigen, is important in a wide range of pathologies and has been implicated in cancer metastasis. The regulation of mucin-type O-linked glycosylation, in health and disease, is highly complex and not fully understood. It is determined by a myriad of mechanisms, from transcriptional control, mutation, posttranslational control, stability of transferases, their relocation within the secretory pathway, and changes in the fundamental structure and environment of the Golgi apparatus. This review presents an overview of the evidence for these potential regulatory steps in the synthesis of truncated mucin-type O-linked glycans in cancer.

Funder

Biotechnology and Biological Sciences Research Council

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3